Signal Processing First

Lecture 11 Linearity & Time-Invariance Convolution

8/22/2003

© 2003, JH McClellan & RW Schafer

4

READING ASSIGNMENTS

- This Lecture:
 - Chapter 5, Sections 5-5 and 5-6
 - Section 5-4 will be covered, but not "in depth"
- Other Reading:
 - Recitation: Ch. 5, Sects 5-6, 5-7 & 5-8
 - CONVOLUTION
 - Next Lecture: start Chapter 6

8/22/2003

© 2003, JH McClellan & RW Schafer

3

GENERAL PROPERTIES of FILTERS

LECTURE OBJECTIVES

LINEARITY

- LTI SYSTEMS
- TIME-INVARIANCE
- ==> CONVOLUTION
- BLOCK DIAGRAM REPRESENTATION
 - Components for Hardware
 - Connect Simple Filters Together to Build More Complicated Systems

OVERVIEW

- IMPULSE RESPONSE, $\frac{h[n]}{n}$
 - FIR case: same as $\{b_k\}$
- CONVOLUTION
 - GENERAL: y[n] = h[n] * x[n]
 - GENERAL CLASS of SYSTEMS
 - LINEAR and TIME-INVARIANT
- ALL <u>LTI</u> systems have h[n] & use convolution

8/22/2003 © 2003. JH McClellan & RW Schafer 4 8/22/2003 © 2003. JH McClellan & RW Schafer 5

DIGITAL FILTERING

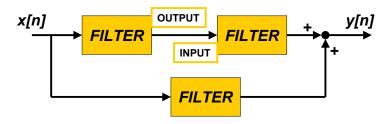
- CONCENTRATE on the FILTER (DSP)
- DISCRETE-TIME SIGNALS
 - FUNCTIONS of n, the "time index"
 - INPUT x[n]
 - OUTPUT y[n]

8/22/2003

© 2003, JH McClellan & RW Schafe

0

BUILDING BLOCKS



- BUILD UP COMPLICATED FILTERS
 - FROM SIMPLE MODULES
 - Ex: FILTER MODULE MIGHT BE 3-pt FIR

8/22/2003 © 2003, JH McClellan & RW Schafer

GENERAL FIR FILTER

- FILTER COEFFICIENTS {b_k}
 - DEFINE THE FILTER

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

• For example, $b_k = \{3, -1, 2, 1\}$

$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

MATLAB for FIR FILTER

- yy = conv(bb,xx)
 - VECTOR bb contains Filter Coefficients
 - DSP-First: yy = firfilt(bb,xx)

© 2003. JH McClellan & RW Schafer

FILTER COEFFICIENTS {b_k}

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

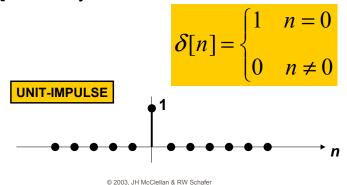
conv2()
for images

8/22/2003 © 2003, JH McClellan & RW Schafer 8 8/22/2003

9

SPECIAL INPUT SIGNALS

- x[n] = SINUSOID FREQUENCY RESPONSE
- x[n] has only one NON-ZERO VALUE



FIR IMPULSE RESPONSE

- Convolution = Filter Definition
 - Filter Coeffs = Impulse Response

n	n < 0	0	1	2	3		M	M + 1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0

$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

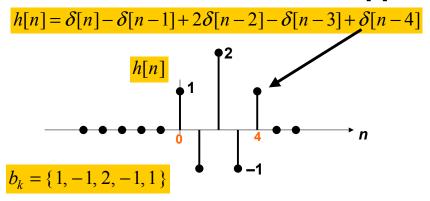
8/22/2003 © 2003, JH McClellan & RW Schafe

11

MATH FORMULA for h[n]

8/22/2003

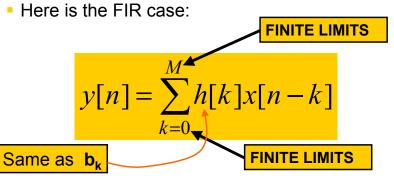
Use SHIFTED IMPULSES to write h[n]



© 2003, JH McClellan & RW Schafer

LTI: Convolution Sum

- Output = Convolution of x[n] & h[n]
 - NOTATION: y[n] = h[n] * x[n]



8/22/2003 © 2003, JH McClellan & RW Schafer

13

CONVOLUTION Example

GENERAL FIR FILTER

SLIDE a Length-L WINDOW over x[n]

$$y[n] = \sum_{k=0}^{m} b_k x[n-k]$$

$$M-\text{th Order FIR Filter Operation (Causal)}$$

$$\text{Running off the Data}$$

$$\text{Over } M+1 \text{ points onto the Data}$$

$$\ell = n-M$$

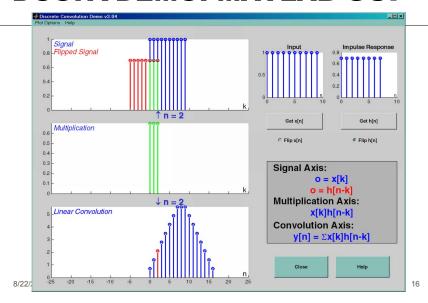
$$\ell = n$$

$$\sqrt{[n-M]}$$

$$\sqrt{[n-M]}$$

© 2003, JH McClellan & RW Schafer

DCONVDEMO: MATLAB GUI



POP QUIZ

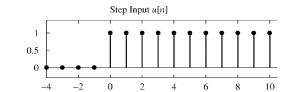
8/22/2003

FIR Filter is "FIRST DIFFERENCE"

•
$$y[n] = x[n] - x[n-1]$$

INPUT is "UNIT STEP"

$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$



15

Find *y*[*n*]

$$y[n] = u[n] - u[n-1] = \delta[n]$$

8/22/2003 © 2003, JH McClellan & RW Schafer

HARDWARE STRUCTURES

FILTER
$$y[n]$$
 $y[n] = \sum_{k=0}^{M} b_k x[n-k]$

- INTERNAL STRUCTURE of "FILTER"
 - WHAT COMPONENTS ARE NEEDED?
 - HOW DO WE "HOOK" THEM TOGETHER?
- SIGNAL FLOW GRAPH NOTATION

8/22/2003

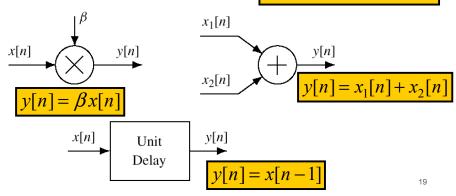
© 2003, JH McClellan & RW Schafe

18

HARDWARE ATOMS

Add, Multiply & Store

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$



FIR STRUCTURE

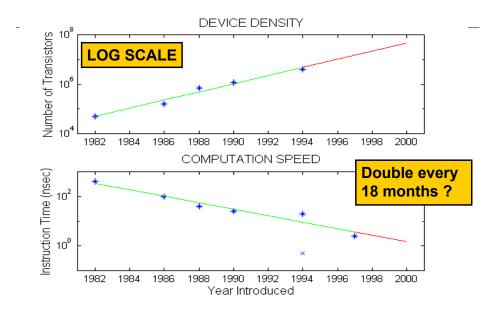
- Direct Form $y[n] = \sum_{k=0}^{M} b_k x[n-k]$ SIGNAL FLOW GRAPH

Unit Delay

Unit Delay b_0 b_1 b_2 b_3 y[n]

Figure 5.13 Block-diagram structure for the Mth order FIR filter.

Moore's Law for TI DSPs



SYSTEM PROPERTIES

- MATHEMATICAL DESCRIPTION
- TIME-INVARIANCE
- LINEARITY
- CAUSALITY
 - "No output prior to input"

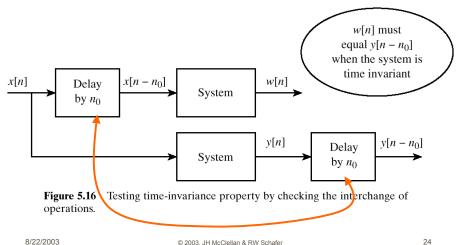
8/22/2003 © 2003, JH McClellan & RW Schafer

TIME-INVARIANCE

- IDEA:
 - "Time-Shifting the input will cause the same time-shift in the output"
- EQUIVALENTLY,
 - We can prove that
 - The time origin (n=0) is picked arbitrary

8/22/2003 © 2003, JH McClellan & RW Schafer 23

TESTING Time-Invariance



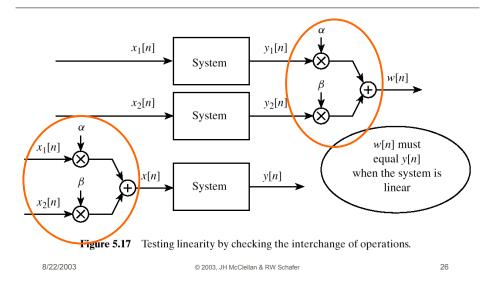
LINEAR SYSTEM

- LINEARITY = Two Properties
- SCALING
 - "Doubling x[n] will double y[n]"
- SUPERPOSITION
 - "Adding two inputs gives an output that is the sum of the individual outputs"

© 2003. JH McClellan & RW Schafer 24 8/22/2003 © 2003. JH McClellan & RW Schafer 25

22

TESTING LINEARITY



LTI SYSTEMS

- LTI: Linear & Time-Invariant
- COMPLETELY CHARACTERIZED by:
 - IMPULSE RESPONSE h[n]
 - **CONVOLUTION**: y[n] = x[n]*h[n]
 - The "rule" defining the system can ALWAYS be rewritten as convolution
- FIR Example: h[n] is same as b_k

8/22/2003 © 2003 JH McClellan & RW Schafer 27

POP QUIZ

- FIR Filter is "FIRST DIFFERENCE"
 - y[n] = x[n] x[n-1]
- Write output as a convolution
 - Need impulse response

$$h[n] = \delta[n] - \delta[n-1]$$

• Then, another way to compute the output:

$$y[n] = (\delta[n] - \delta[n-1]) * x[n]$$

CASCADE SYSTEMS

- Does the order of S₁ & S₂ matter?
 - NO, LTI SYSTEMS can be rearranged !!!
 - WHAT ARE THE FILTER COEFFS? {b_k}

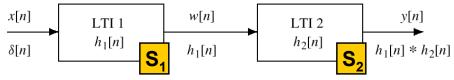


Figure 5.19 A Cascade of Two LTI Systems.

8/22/2003 © 2003, JH McClellan & RW Schafer 28 8/22/2003 © 2003, JH McClellan & RW Schafer 29

CASCADE EQUIVALENT

• Find "overall" h[n] for a cascade?

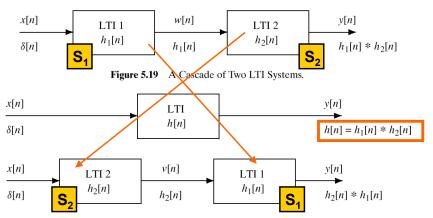


Figure 5.20 Switching the order of cascaded LTI systems.