Signal Processing First

Lecture 8 Sampling & Aliasing

9/14/2003 © 2003, JH McClellan & RW Schafer

LECTURE OBJECTIVES

- SAMPLING can cause ALIASING
 - Sampling Theorem
 - Sampling Rate > 2(Highest Frequency)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

9/14/2003

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$
ALIASING

READING ASSIGNMENTS

- This Lecture:
 - Chap 4, Sections 4-1 and 4-2
 - Replaces Ch 4 in DSP First, pp. 83-94
- Other Reading:
 - Recitation: Strobe Demo (Sect 4-3)
 - Next Lecture: Chap. 4 Sects. 4-4 and 4-5

9/14/2003 © 2003, JH McClellan & RW Schafer

SYSTEMS Process Signals

- PROCESSING GOALS:
 - Change x(t) into y(t)
 - For example, more BASS
 - Improve x(t), e.g., image deblurring
 - Extract Information from x(t)

© 2003, JH McClellan & RW Schafer 4 9/14/2003 © 2003, JH McClellan & RW Schafer 5

System IMPLEMENTATION

- ANALOG/ELECTRONIC:
 - Circuits: resistors, capacitors, op-amps

- DIGITAL/MICROPROCESSOR
 - Convert x(t) to numbers stored in memory

9/14/2003 © 2003, JH McClellan & RW Schafer

SAMPLING x(t)

- SAMPLING PROCESS
 - Convert x(t) to numbers x[n]
 - "n" is an integer; x[n] is a sequence of values
 - Think of "n" as the storage address in memory
- UNIFORM SAMPLING at t = nT_s
 - IDEAL: $x[n] = x(nT_s)$

9/14/2003 © 2003, JH McClellan & RW Schafer

SAMPLING RATE, fs

- SAMPLING RATE (f_s)
 - $f_s = 1/T_s$
 - NUMBER of SAMPLES PER SECOND
 - T_s = 125 microsec → f_s = 8000 samples/sec
 UNITS ARE HERTZ: 8000 Hz
- UNIFORM SAMPLING at t = nT_s = n/f_s
 - IDEAL: $x[n] = x(nT_s) = x(n/f_s)$

9/14/2003 © 2003, JH McClellan & RW Schafer

SAMPLING THEOREM

- HOW OFTEN?
 - DEPENDS on FREQUENCY of SINUSOID
 - ANSWERED by SHANNON/NYQUIST Theorem
 - ALSO DEPENDS on "RECONSTRUCTION"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

9/14/2003 © 2003, JH McClellan & RW Schafer 1

Reconstruction? Which One?

Given the samples, draw a sinusoid through the values

$$x[n] = \cos(0.4\pi n)$$

When *n* is an integer $cos(0.4\pi n) = cos(2.4\pi n)$

9/14/2003 © 2003, JH McClellan & RW Schafer

STORING DIGITAL SOUND

- x[n] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
 - 16-bit samples
 - Stereo uses 2 channels
- Number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

DISCRETE-TIME SINUSOID

Change x(t) into x[n] <u>DERIVATION</u>

$$x(t) = A\cos(\omega t + \varphi)$$

$$x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$$

$$x[n] = A\cos((\omega T_s)n + \varphi)$$

$$x[n] = A\cos(\hat{\omega}n + \varphi)$$

$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$
 DEFINE DIGITAL FREQUENCY

DIGITAL FREQUENCY

- $\hat{\omega}$
- $\hat{\omega}$ VARIES from 0 to 2π , as f varies from 0 to the sampling frequency
- UNITS are radians, not rad/sec
 - DIGITAL FREQUENCY is <u>NORMALIZED</u>

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

9/14/2003

© 2003, JH McClellan & RW Schafe

SPECTRUM (DIGITAL)

SPECTRUM (DIGITAL) ???

The REST of the STORY

- Spectrum of x[n] has more than one line for each complex exponential
 - Called ALIASING
 - MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with period = 2π
 - Because

$$A\cos(\hat{\omega}n + \varphi) = A\cos((\hat{\omega} + 2\pi)n + \varphi)$$

9/14/2003 © 2003, JH McClellan & RW Schafer 1

ALIASING DERIVATION

• Other Frequencies give the same $\hat{\omega}$

$$x_1(t) = \cos(400\pi t)$$
 sampled at $f_s = 1000 \,\text{Hz}$
 $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$
 $x_2(t) = \cos(2400\pi t)$ sampled at $f_s = 1000 \,\text{Hz}$

$$x_2[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$$

$$x_2[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$$

$$\Rightarrow x_2[n] = x_1[n]$$

 $2400\pi - 400\pi = 2\pi(1000)$

9/14/2003

© 2003, JH McClellan & RW Schafe

40

ALIASING DERIVATION-2

• Other Frequencies give the same $\hat{\omega}$

If
$$x(t) = A \cos(2\pi (f + \ell f_s)t + \varphi)$$

and we want: $x[n] = A\cos(\hat{\omega}n + \varphi)$

then:
$$\hat{\omega} = \frac{2\pi (f + \ell f_s)}{f_s} = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$$

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

9/14/2003

19

ALIASING CONCLUSIONS

- ADDING f_s or 2f_s or -f_s to the FREQ of x(t) gives exactly the same x[n]
 - The samples, x[n] = x(n/f_s) are EXACTLY THE <u>SAME VALUES</u>
- GIVEN x[n], WE CAN'T DISTINGUISH f_o FROM (f_o + f_s) or (f_o + 2f_s)

NORMALIZED FREQUENCY

DIGITAL FREQUENCY
 Normalized Radian Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

Normalized Cyclic Frequency

$$\hat{f} = \hat{\omega}/(2\pi) = fT_s = f/f_s$$

9/14/2003 © 2003, JH McClellan & RW Schafer

9/14/2003

© 2003. JH McClellan & RW Schafe

SPECTRUM for x[n]

- PLOT versus NORMALIZED FREQUENCY
- INCLUDE <u>ALL</u> SPECTRUM LINES
 - ALIASES
 - ADD MULTIPLES of 2π
 - SUBTRACT MULTIPLES of 2π
 - FOLDED ALIASES
 - (to be discussed later)
 - ALIASES of NEGATIVE FREQS

9/14/2003 © 2003, JH McClellan & RW Schafer

22

SPECTRUM (MORE LINES)

SPECTRUM (ALIASING CASE)

SAMPLING GUI (con2dis)

SPECTRUM (FOLDING CASE)

$$x[n] = A\cos(2\pi(100)(n/125) + \varphi)$$

