
GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 2025 Spring 2004
Problem Set #12

Assigned: 10-April-04
Due Date: 23-April-04

This Homework can be turned at the last lecture onFriday, 23-April before Noon,or earlier that week.

Final Exam will be given on 30-April at 2:50 PM.One page (812 × 11′′) of handwritten notes allowed.

Reading: InSP First, Chapter 8:IIR Filters

=⇒ Please check the “Bulletin Board” often. All official course announcements are posted there.

ALL of theSTARRED problems will have to be turned in for grading. A solution will be posted to the web.
Some problems have solutions similar to those found on the CD-ROM.

PROBLEM 12.1*:
The derivation of the Sampling Theorem involves the operations of impulse train sampling and reconstruc-
tion as shown in the following system:

(a)

0

(b)

LTI System

Hr ( jω)

A

p(t) =
∞∑

n=−∞
δ(t − nTs)

xs(t)x(t) xr (t)

ω

X ( jω)

80π–80π

A “typical” bandlimited Fourier transform of the input is also shown above.

(a) For the input with Fourier transform depicted above, determine the Nyquist rate, i.e., the smallest
sampling rateωs = 2π/Ts so thatxr (t) = x(t). Then plotXs( j ω) for the value ofωs = 2π/Ts that
is equal to 1.5 times the Nyquist rate.

(b) If ωs = 2π/Ts = 150π in the above system andX( j ω) is as depicted above, plot the Fourier trans-
form Xs( j ω) and show that aliasing occurs. There will be an infinite number of shifted copies of
X( j ω), so indicate the general pattern versusω.

(c) For the conditions of part (b), i.e.,Ts = 1/75, determine and sketch the Fourier transform of the
output,Xr ( j ω), if the frequency response of the LTI system is

Hr ( j ω) =

{
Ts |ω| ≤ π/Ts

0 |ω| > π/Ts

PROBLEM 12.2*:
Signal Processing First, Chapter8, Problem11, page 240.



PROBLEM 12.3*:
Signal Processing First, Chapter8, Problem13, page 240–241.

PROBLEM 12.4*:
Signal Processing First, Chapter8, Problem14, page 241.
Note: There is an error in the text for problemsP-8.13 andP-8.14. The systemS6 should be

S6 : y[n] =

3∑
k=0

x[n − k] (upper limit of 3, not 2)

Copies of pages 240–241 (corrected) from the textbook are attached at the end of this document.

PROBLEM 12.5*:
Given a feedback filter defined via the recursion:

y[n] = 0.25y[n − 2] + x[n] (D IFFERENCEEQUATION)

(a) Determine the impulse responseh[n], assuming the “at rest” initial condition.

(b) Determine the system functionH(z), and find the poles and zeros of the system.

(c) When the input to the system is the signal:x[n] = (−1)nu[n], determine the output signaly[n],
assuming the “at rest” initial condition (i.e., the output signal is zero forn < 0).
Hint: it should be possible to solve this problem withz-transforms; however, the algebra is easier if
you do not factor the denominator ofH(z).

(d) Make a plot of the output signaly[n] from part (c) over the range−5 ≤ n ≤ 15.

(e) Determine the region of the outputy[n] where the signal would be considered to have itstransient
behavior; likewise, identify the region wherey[n] has itssteady-statebehavior.

(f) Evaluate the frequency response atω̂ = π , and comment on the amplitude of the steady-state response
signal found in part (e) versusH(ej π ).
Hint: for which value ofz is H(z) equal toH(ej π ) ?

PROBLEM 12.6 :
In the following cascade of systems, all of the individual system functions,Hi (z), are known.

- H1(z) H2(z) H3(z)- - -
x[n] v1[n] v2[n] y[n]

H1(z) = z−2
+ z−3 H2(z) = 6 − 3z−1 H3(z) =

2

8 − 10z−1 + 3z−2

(a) DetermineH(z) thez-transform of the cascaded system. SimplifyH(z) by cancelling common fac-
tors in the numerator and denominator.

(b) Consider the impulse response of the cascaded system, i.e., the responsey[n] when the input isx[n] =

δ[n]. Prove that the impulse response has the formh[n] = G αn for n ≥ 3. Find values forα andG.

(c) Write one difference equationthat defines the overall system in terms ofx[n] and y[n] only.



PROBLEM 12.7 :
This type of problem has often appeared on the Final Exam.
Consider the following system for discrete-time filtering of a continuous-time signal:

-
Ideal

C-to-D
Converter

LTI
System
H(ej ω̂)

Ideal
D-to-C

Converter
- - -

x(t) x[n] y[n] y(t)

6
fs = 1/Ts

6
fs = 1/Ts

Heff( j ω)

(a) Suppose that the discrete-time system is defined by the difference equation

y[n] = 0.8y[n − 1] + x[n] + x[n − 2],

and the sampling rate of the input isfs = 200 samples/second. Determine an expression forHeff( j ω),
the overall effective frequency response (versus analog frequencyω) of the above system. Use this
result to find the outputy(t) when the input to the overall system isx(t) = 2 cos(100π t).

(b) Assume that the input signalx(t) has a bandlimited Fourier transformX( j ω) as depicted below.
For this input signal, what is thesmallestvalue of the sampling frequencyfs such that the Fourier
transforms of the input and output satisfy the relationY( j ω) = Heff( j ω)X( j ω)?
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(c) Assume that the discrete-time system has frequency responseH(ej ω̂) defined by the following plot:

· · ·· · ·
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H(ej ω̂)
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π
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−2π −π π 2π

Now, if fs = 200 samples/sec, make a carefully labeled plot ofHeff( j ω), the effective frequency
response of the overall system. Also plotY( j ω), the Fourier transform of the outputy(t), when the
input has Fourier transformX( j ω) as depicted in the graph of part (b).

(d) For the input in part (b) and the system in part (c), what is the smallest sampling rate such that
the input signal passes through the lowpass filter unaltered; i.e., what is the minimumfs such that
Y( j ω) = X( j ω)?



240 CHAPTER 8 IIR FILTERS

(a) Ha(z) =
1− z−1

1+ 0.77z−1

(b) Hb(z) =
1+ 0.8z−1

1− 0.9z−1

(c) Hc(z) =
z−2

1− 0.9z−1

(d) Hd(z) = 1− z−1
+ 2z−3

− 3z−4

P-8.12 Determine the inversez-transform of the
following:

(a) Xa(z) =
1− z−1

1− 1
6z−1−

1
6z−2

(b) Xb(z) =
1+ z−2

1+ 0.9z−1+ 0.81z−2

(c) Xc(z) =
1+ z−1

1− 0.1z−1− 0.72z−2

P-8.13 For each of the pole-zero plots in Fig. P-8.13,
determine which of the following systems (specified by
either anH(z) or a difference equation) matches the
pole-zero plot.

S1 : y[n] = 0.9y[n− 1] + 1
2x[n] + 1

2x[n− 1]

S2 : y[n] = −0.9y[n− 1] + 9x[n] + 10x[n− 1]

S3 : H(z) =
1
2(1− z−1)

1+ 0.9z−1

S4 : y[n] = 1
4x[n] + x[n− 1] + 3

2x[n− 2]

+ x[n− 3] + 1
4x[n− 4]

S5 : H(z) = 1− z−1
+ z−2

− z−3
+ z−4

S6 : y[n] =
3∑

k=0

x[n− k]

S7 : y[n] = x[n] + x[n− 1] + x[n− 2]

+ x[n− 3] + x[n− 4] + x[n− 5]

 (5)

Pole−Zero Plot #1

Pole−Zero Plot #3

 (4)

Pole−Zero Plot #5

Pole−Zero Plot #2

 (3)

Pole−Zero Plot #4

Pole−Zero Plot #6
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Figure P-8.13
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P-8.14 For each of the frequency-response plots (A–
F) in Fig. P-8.14, determine which of the following
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Figure P-8.14

systems (specified by either anH(z) or a difference
equation) matches the frequency response.

Note: The frequency axis for each plot extends over
the range−π ≤ ω̂ ≤ π .

S1 : y[n] = 0.9y[n− 1] + 1
2x[n] + 1

2x[n− 1]

S2 : y[n] = −0.9y[n− 1] + 9x[n] + 10x[n− 1]

S3 : H(z) =
1
2(1− z−1)

1+ 0.9z−1

S4 : y[n] = 1
4x[n] + x[n− 1] + 3

2x[n− 2]

+ x[n− 3] + 1
4x[n− 4]

S5 : H(z) = 1− z−1
+ z−2

− z−3
+ z−4

S6 : y[n] =
3∑

k=0

x[n− k]

S7 : y[n] = x[n] + x[n− 1] + x[n− 2]

+ x[n− 3] + x[n− 4] + x[n− 5]

P-8.15 Given an IIR filter defined by the difference
equation

y[n] = 1
2 y[n− 1] + x[n]

(a) When the input to the system is a unit-step
sequence,u[n], determine the functional form for
the output signaly[n]. Use the inversez-transform
method. Assume that the output signaly[n] is zero
for n < 0.

(b) Find the output whenx[n] is a complex exponential
that starts atn = 0:

x[n] = ej (π/4)nu[n]

(c) From (b), identify the steady-state component of
the response, and compare its magnitude and phase
to the frequency response atω̂ = π/4.


