9.1(a) $h(t)=e^{0.5 t}[\mu(t+2)-\mu(t-2)]$

NOT cansal
$9.1(6)$

There are 4 regions: $t<-2 \quad y_{1}(t)=0$

$$
\begin{array}{cc}
-2<t<2 & y_{2}(t)=? \\
2<t<6 & y_{3}(t)=? \tag{3}\\
6<t & y_{4}(t)=0
\end{array}
$$

Problem 9.1(d): A linear time-invariant system has impulse response:

$$
h(t)=e^{0.5 t}\{u(t+2)-u(t-2)\}= \begin{cases}e^{0.5 t} & -2 \leq t<2 \\ 0 & \text { otherwise }\end{cases}
$$

Use the convolution integral to determine the output $y(t)$ when the input is

$$
x(t)=6 e^{-0.5 t}\{u(t)-u(t-4)\}= \begin{cases}6 e^{-0.5 t} & 0 \leq t<4 \\ 0 & \text { otherwise }\end{cases}
$$

There are normally 5 regions when you convolve two finite-duration signals. In this case, the complete overlap region is just a point because both signals have a length of 4 secs, so there are only 4 regions to consider:

Region 1: No overlap for $t<-2$, so $y(t)=0$.
Region 2: Partial overlap for $-2 \leq t<2$; in this region the output signal is:

$$
\begin{aligned}
y(t) & =\int_{0}^{t+2} e^{-0.5 \tau} 6 e^{0.5(t-\tau)} d \tau \\
& =6 e^{0.5 t} \int_{0}^{t+2} e^{-\tau} d \tau=-\left.6 e^{0.5 t} e^{-\tau}\right|_{0} ^{t+2}=6 e^{0.5 t}\left(e^{0}-e^{-(t+2)}\right)=6 e^{0.5 t}-6 e^{-0.5 t-2}
\end{aligned}
$$

Region 3: Partial overlap for $2 \leq t \leq 6$; in this region the output signal is:

$$
\begin{aligned}
y(t) & =\int_{t-2}^{4} e^{-0.5 \tau} 6 e^{0.5(t-\tau)} d \tau \\
& =6 e^{0.5 t} \int_{t-2}^{4} e^{-\tau} d \tau=-\left.6 e^{0.5 t} e^{-\tau}\right|_{t-2} ^{4}=6 e^{0.5 t}\left(e^{-(t-2)}-e^{-4}\right)=6 e^{-0.5 t+2}-6 e^{0.5 t-4}
\end{aligned}
$$

Region 4: No overlap for $t>6$, so $y(t)=0$.

9.2(b) Yes, $h(t)$ is causal, because there is no output before input.
9.2(c) No $h(t)$ is not stable

$$
\int_{0.5}^{\infty} t^{-1} d t=\ln \infty-\ln 0.5 \text { which is not bounded. }
$$

9.2(d) $\times(t)=\mu(t-1)$ Dr ow the convolution diagram.

Clearly $t,=1.5$
q.2(e) $y(t)=\int_{\tau=0.5}^{\tau=t-1} \tau^{-1} d \tau=\left.\ln \tau\right|_{0.5} ^{t-1}=\ln (t-1)-\ln 0.5$

$$
=\ln [2(t-1)]
$$

9.3(a)

$9.3(6)$ The min value of $y(t)$ occurs when $t=7$
9.3(c) $x(t)=7 u(t-3) \quad h(t)=10[u(t-2)-u(t)]$

$$
\begin{aligned}
& y(t)=B\left(t-T_{12}\right)\left[\begin{array}{ccc}
u\left(t-T_{12}\right) & \left.-u\left(t-T_{23}\right)\right]+C u\left(t-T_{23}\right) \\
-70 & 3 & 5 \\
-70 & -140 \\
B=-70 \quad T_{12}=3 & C=-140 & T_{23}=5
\end{array}\right)
\end{aligned}
$$

$9.4 h_{1}(t)=e^{-t} u\left(t-\frac{1}{2}\right) \quad y(t)=\frac{d}{d t} w(t-2)-\int_{-\infty}^{t-2} w(7) d r$
9.4(a)

If $x(t)=\delta(t)$, then $y(t)=h_{1}(t)^{*} h_{2}(t)$, which is the overall system impulse response, $h(t)$. Therefore

$$
\begin{aligned}
& \left.Y(t)\right|_{x(t)=\delta(t)}=\frac{d}{d t}\left[e^{-(t-2)} u(t-2.5)\right]-\int_{-\infty}^{t-2} e^{-\tau} u\left(\tau-\frac{1}{2}\right) d \tau \\
& =-e^{-(t-2)} u(t-2.5)+e^{-(t-2)} \delta(t-2.5)-\int_{\tau=\frac{1}{2}}^{t-2} e^{-\tau} d \tau \\
& \text { Ito informal is onlu valid. }
\end{aligned}
$$

The integral is only valid
for $t-2 \geq 0,5, \therefore t \geq 2,5$

$$
\begin{aligned}
& =e^{-0.5-(t-2.5)} e^{-(t-2.5)-e^{-0.5} e^{-(t-2.5)} u(t-2.5)} \\
& \quad+e^{-\tau / t-2} u(t-2.5) \\
& =e^{-0.5-(t-2.5)} e^{t} \delta(t-2.5)-e^{-0.5}-(t-2.5) \\
& = \\
& \left.\quad e^{-0.5} e^{-(t-2.5)}-e^{-0.5}\right) u(t-2.5) \\
& = \\
& e^{-0.5} e^{0} \delta(t-2.5)-e^{-0.5} u(t-2.5) \\
& = \\
& e^{-0.5} \delta(t-2.5)-e^{-0.5} u(t-2.5)
\end{aligned}
$$

$9.4(6) \times(t)=e^{t} u(t)$

$$
\begin{aligned}
& y(t)=x(t)^{*} h(t)=\left[\begin{array}{c}
t \\
e \\
u(t)
\end{array}\right]^{*} e^{-0.5}[\delta(t-2.5)-u(t-2.5)] \\
& =e^{-0.5}\left[e^{t} u(t)\right]^{*}[\delta(t-2.5)-u(t-2.5)] \\
& =e^{-0.5}\left[e^{(t-2.5)} u(t-2.5)\right]-e^{-0.5}\left[e^{t} u(t)^{*} u(t-2.5)\right] \\
& =e^{-0.5} e^{(t-2.5)} u(t-2.5)-e^{-0.5}\left[e^{(t-2.5)} u(t-2.5)-u(t-2.5)\right] \\
& =e^{-0.5} u(t-2.5)
\end{aligned}
$$

$9.5 \quad h(t)=\delta(t)-\frac{1}{2} b e^{-b t} u(t)$
9.5(a) $H(w)=1-\frac{b / 2}{b+j \omega}$ using the table of bavic transform paire
9.5(b) for $b=10 \pi, H(\omega)=1-\frac{5 \pi}{10 \pi+j \omega}$

9.5 (c) The filter is a HPF.

$$
\begin{aligned}
& \left.\frac{9.5(d)}{H(\omega}=0\right)=0.5 \quad H(\omega=90 \pi)=0.9954 \mathrm{e}^{j} 0.0552 \\
& \begin{aligned}
x(t) & =10(.5)+40(.9954) \cos (90 \pi t+0.0552) \\
& =5+39.816 \cos (90 \pi t+0.0552)
\end{aligned}
\end{aligned}
$$

