PROBLEM 7.1*:

In the cascade connection of Fig. 1, Systems \#1 and \#2 are described by a difference equation and an impulse response:

$$
y_{1}[n]=\frac{1}{2} x[n]+x[n-1]+\frac{1}{2} x[n-2] \quad \text { and } \quad h_{2}[n]=\frac{1}{2} \delta[n-1]+\delta[n-2]+\frac{1}{2} \delta[n-3]
$$

Notice that the two filters are nearly identical: Filter \#2 is a delayed version of Filter \#1.
(a) The frequency response sequence, $H_{1}\left(e^{j \hat{\omega}}\right)$, of the first system is:

$$
H_{1}\left(e^{j \hat{\omega}}\right)=\frac{1}{2}+e^{-j \hat{\omega}}+\frac{1}{2} e^{-j 2 \hat{\omega}}=e^{-j \hat{\omega}}\left(\frac{1}{2} e^{j \hat{\omega}}+1+\frac{1}{2} e^{-j \hat{\omega}}\right)=e^{-j \hat{\omega}}(1+\cos (\hat{\omega}))
$$

(b) The frequency response sequence, $H_{2}\left(e^{j \hat{\omega}}\right)$, of the second system is:

$$
H_{2}\left(e^{j \hat{\omega}}\right)=\frac{1}{2} e^{-j \hat{\omega}}+e^{-j 2 \hat{\omega}}+\frac{1}{2} e^{-j 2 \hat{\omega}}=e^{-j 2 \hat{\omega}}\left(\frac{1}{2} e^{j \hat{\omega}}+1+\frac{1}{2} e^{-j \hat{\omega}}\right)=e^{-j 2 \hat{\omega}}(1+\cos (\hat{\omega}))
$$

Thus the frequency response, $H\left(e^{j \hat{\omega}}\right)$, of the overall cascade system is:

$$
H\left(e^{j \hat{\omega}}\right)=H_{1}\left(e^{j \hat{\omega}}\right) H_{2}\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}(1+\cos (\hat{\omega})) e^{-j 2 \hat{\omega}}(1+\cos (\hat{\omega}))=e^{-j 3 \hat{\omega}}(1+\cos (\hat{\omega}))^{2}
$$

(c) The plot of the magnitude and phase of the frequency response of the overall cascaded system is below:

(d) When the input to this system is

$$
x[n]=5+3 \cos \left(\frac{1}{3} \pi(n-1)\right)
$$

we evaluate the frequency response at $\hat{\omega}=0, \frac{1}{3} \pi$ to determine the output signal, $y[n]$.

$$
\begin{aligned}
\text { at } \hat{\omega}=0,\left.\quad H\left(e^{j \hat{\omega}}\right)\right|_{\hat{\omega}=0} & =e^{-j 3 \hat{\omega}}(1+\cos (\hat{\omega}))^{2}=2 \\
\text { at } \hat{\omega}=\frac{1}{3} \pi,\left.\quad H\left(e^{j \hat{\omega}}\right)\right|_{\hat{\omega}=\pi / 3} & =e^{-j 3 \pi / 3}(1+\cos (\pi / 3))^{2}=e^{-j \pi}\left(1+\frac{1}{2}\right)^{2}=2.25 e^{-j \pi}=-2.25
\end{aligned}
$$

Thus the output signal is:

$$
y[n]=5 \times 4+(3 \times 2.25) \cos \left(\frac{1}{3} \pi(n-1)-\pi\right)=20+6.75 \cos \left(\frac{1}{3} \pi n-4 \pi / 3\right)
$$

This formula for $y[n]$ is valid over the range $-\infty \leq n \leq \infty$.

PROBLEM 7.2*:

$$
\begin{gathered}
7.2(a) \quad H\left(e^{j \hat{\omega}}\right)=1-e^{-j \hat{\omega}}+e^{-j 2 \hat{\omega}}-e^{-j 3 \hat{\omega}} \\
+e^{-j 4 \hat{\omega}}-e^{-j 5 \hat{\omega}}
\end{gathered}
$$

7,2(6) Refer to page 145 in the text. Rewrite $A\left(e^{j} \dot{y}\right)$ as

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=1+e^{-j \hat{\omega}-j \pi} e^{-j 2 \hat{\omega}}-e^{-j 2 \pi}+e^{-j 3 \hat{\omega}} e^{-j 3 \pi} \\
&+e^{-j 4 \hat{\omega}} e^{-j 4 \pi}+e^{-j 5 \hat{\omega}} e^{-j 5 \pi} \\
& H\left(e^{j \omega}\right)= 1+e^{-j(\hat{\omega}-\pi)}+e^{-j 2(\hat{\omega}-\pi)}+e^{-j 3(\hat{\omega}-\pi)} \\
&+e^{-j 4(\hat{\omega}-\pi)}+e^{-j 5(\hat{\omega}-\pi)}
\end{aligned}
$$

then using equation 6.25 on page 145:

$$
L=6, H\left(e^{j^{\dot{\omega}}}\right)=\frac{\sin (3(\hat{\omega}-\pi))}{\sin \left(\frac{1}{2}(\hat{\omega}-\pi)\right)} e^{-j 2 \cdot 5(\hat{\omega}-\pi)}
$$

$7.2(d) \sin (3(\hat{\omega}-\pi))=0$ at $\begin{aligned} \hat{\omega} & =0, \pm \frac{\pi}{3}, \pm \frac{2 \pi}{3} \\ & = \pm 1.8472, \pm 2.0944\end{aligned}$

PROBLEM 7.3*:

$$
1.3 \times[n]=\frac{1}{2} \delta[n-4]+\delta[n-5]+\frac{1}{2} \delta[n-6]
$$

7,3(a) $n=-\infty$ to ∞

$$
\begin{aligned}
& h[n]=\quad 1 / 2 \quad 1 \quad 1 / 2 \\
& x[n]=C_{1} \quad C_{2} \quad C_{1} \quad C_{2} \quad C_{1} \quad C_{2} \quad C_{1} \quad C_{2} \quad C_{1} \quad C_{2} \\
& \begin{array}{llllllllll}
c_{1} / 2 & c_{2} / 2 & c_{1 / 2} & c_{2 / 2} & c_{1 / 2} & c_{2 / 2} & c_{1 / 2} & c_{2} / 2 & c_{1 / 2} & c_{2 / 2}
\end{array} \\
& \begin{array}{llllllllll}
C_{2} & C_{1} & C_{2} & C_{1} & C_{2} & C_{1} & C_{2} & C_{1} & C_{2} & C_{1}
\end{array} \cdots \\
& \begin{array}{llllllll}
c_{1} / 2 & c_{2} / 2 & c_{1} / 2 & c_{2} / 2 & c_{1} / 2 & c_{2 / 2} & c_{1} / 2 & c_{2} / 2 \\
c_{1 / 2} & c_{2} / 2 \\
n]=\left(c_{1}+c_{2}\right) & \left(c_{1}+c_{2}\right) & \left(c_{1}+c_{2}\right) & \left(c_{1}+c_{2}\right) & \left(c_{1}+c_{2}\right) & \left(c_{1}+c_{2}\right) & \left(c_{1}+c_{2}\right)\left(c_{1}+c_{2}\right) & \cdots
\end{array} \\
& 7,3(b) H\left(e^{j \hat{\omega}}\right)=1 / 2 e^{-j 4 \hat{\omega}}+e^{-j 5 \hat{\omega}}+\frac{1}{2} e^{-j 6 \hat{\omega}} \\
& =e^{-j^{5} \hat{\omega}}\left[\frac{1}{2} e^{+j \hat{\omega}}+1+\frac{1}{2} e^{-j \hat{\omega}}\right] \\
& =e^{-j 5 \hat{\omega}[1+\cos (\hat{\omega})]}
\end{aligned}
$$

7. 3 (d) $x_{1}[n]=3(-1)^{n}+2 \cos (0.62574 n)$

There are two components in $x,[n]$. The first component, $3(-1)^{n}$ can be shown to coroduce a zero output, in accordance with $7.3(\mathrm{a})$. For the second component

$$
\begin{aligned}
& H(\hat{\omega}=0.625 \pi)=e^{-j 5(0.625 \pi)}[1+\cos (0.625 \pi)] \\
& =0.6173 e^{-j \frac{9 \pi}{8}}=0.6173 e^{j \frac{7 \pi}{8}} \\
& x_{1}[n]=2(0.6173) \cos \left[0.625 \pi n+\frac{7 \pi}{8}\right]
\end{aligned}
$$

ECE2025 HW\#7
Spring 2004
Page 7 of 9

$$
\begin{aligned}
& \frac{7.4(a)}{} H\left(e^{j} \hat{\omega}\right)=\frac{1}{2} e^{-j^{4} \hat{\omega}}+e^{-j 5 \hat{\omega}}+\frac{1}{2} e^{-j 6 \hat{\omega}} \\
& =e^{-j 5 \hat{\omega}}\left(1+\frac{1}{2} e^{+j \hat{\omega}}+\frac{1}{2} e^{-j \hat{\omega}}\right)=e^{-j^{j} 5 \hat{\omega}}(1+\cos \hat{\omega}) \\
& \underbrace{7.4(b)}_{x(t)}=\cos \omega t \quad y(t)=\cos (\omega t+\phi)
\end{aligned}
$$

Le magnitude of $H\left(e j^{j} \hat{\omega}\right)$ must be $=1$, so that requires cos $\hat{\omega}=0$, and. $\therefore \hat{\omega}=\pi / 2=2 \pi \frac{1}{\hat{A}_{s}}$

$$
\begin{aligned}
& \therefore f=\frac{\pi}{2} f_{s} \cdot \frac{1}{2 \pi}=\frac{1}{4} f_{s}=\frac{800}{4}=200 \mathrm{~Hz} \\
& x(t)=\cos [400 \pi t]
\end{aligned}
$$

$7.4(c) \times(t)=99+88 \cos (500 \pi-t)$
for $T_{s}=800$

$$
\begin{aligned}
& x[n]=99+88 \cos \left(\frac{5 \pi n}{8}\right) \\
& H\left(\hat{\omega}=\frac{5 \pi}{8}\right)=e^{-j \frac{25 \pi}{8}}\left(1+\cos \frac{5 \pi}{8}\right)=0.617 e^{-j \frac{25 \pi}{8}} \\
& H(\hat{\omega}=0)=e^{-j 0}(1+1)=2 \\
& x(t)=99(2)+88(.617) \cos (500 \pi t-25 \pi / 8) \\
& =198+54.32 \cos (500 \pi t-25 \pi / 8)
\end{aligned}
$$

PROBLEM 7.5*:

(a) Write the difference equation that gives the relation between the input $x[n]$ and the output $y[n]$.

$$
\begin{aligned}
H\left(e^{j \hat{\omega}}\right) & =\left(1+e^{-j 2 \hat{\omega}}\right)\left(1+e^{-j 4 \pi / 3} e^{-j \hat{\omega}}\right)\left(1+e^{-j 2 \pi / 3} e^{-j \hat{\omega}}\right) \\
& =\left(1+e^{-j 2 \hat{\omega}}\right)\left(1+\left(e^{+j 2 \pi / 3}+e^{-j 2 \pi / 3}\right) e^{-j \hat{\omega}}+e^{-j 2 \hat{\omega}}\right) \\
& =1+2 \cos (2 \pi / 3) e^{-j \hat{\omega}}+(1+1) e^{-j 2 \hat{\omega}}+2 \cos (2 \pi / 3) e^{-j 3 \hat{\omega}}+e^{-j 4 \hat{\omega}} \\
& =1-e^{-j \hat{\omega}}+2 e^{-j 2 \hat{\omega}}-e^{-j 3 \hat{\omega}}+e^{-j 4 \hat{\omega}}
\end{aligned}
$$

The difference equation is

$$
y[n]=x[n]-x[n-1]+2 x[n-2]-x[n-3]+x[n-4]
$$

(b) Determine the impulse response of this system by using the coefficients of the expression for $H\left(e^{j \hat{\omega}}\right)$.

$$
h[n]=\delta[n]-\delta[n-1]+2 \delta[n-2]-\delta[n-3]+\delta[n-4]
$$

Stem Plot is here

(c) If the input is a complex exponential of the form $x[n]=A e^{j \phi} e^{j \hat{\omega} n}$, then $y[n]=0$ for all n, whenever $H\left(e^{j \hat{\omega}}\right)=0$ for that $\hat{\omega}$. Using the factored form of $H\left(e^{j \hat{\omega}}\right)$, we can set each factor equal to zero:

$$
\begin{aligned}
&\left(1+e^{-j 2 \hat{\omega}}\right)=0 \Longrightarrow \hat{\omega}= \pm \pi / 2 \\
&\left(1+e^{-j 4 \pi / 3} e^{-j \hat{\omega}}\right)=0 \Longrightarrow \hat{\omega}=\pi-4 \pi / 3=-\pi / 3 \\
&\left(1+e^{-j 2 \pi / 3} e^{-j \hat{\omega}}\right)=0 \quad \Longrightarrow \hat{\omega}=\pi-2 \pi / 3=\pi / 3
\end{aligned}
$$

(d) The output of this system when the input is

$$
x[n]=3+7 \delta[n-1]+13 \cos (0.5 \pi n-\pi / 4) \quad \text { for }-\infty<n<\infty
$$

can be determined by Superposition.

$$
\begin{aligned}
& x_{1}[n]=3 \Longrightarrow y_{1}[n]=H\left(e^{j 0}\right) \times 3=2 \times 3=6 \\
& x_{2}[n]=7 \delta[n-1] \Longrightarrow y_{2}[n]=7 h[n-1] \\
& =7 \delta[n-1]-7 \delta[n-2]+14 \delta[n-3]-7 \delta[n-4]+7 \delta[n-5] \\
& x_{3}[n]=13 \cos (0.5 \pi n-\pi / 4) \Longrightarrow y_{3}[n]=13\left|H\left(e^{j 0.5 \pi}\right)\right| \cos \left(0.5 \pi n-\pi / 4+\angle H\left(e^{j 0.5 \pi}\right)\right)=0
\end{aligned}
$$

because we have already noted that $H\left(e^{j \hat{\omega}}\right)=0$ at $\hat{\omega}= \pm \pi / 2$. Finally, we get

$$
\begin{aligned}
y[n] & =y_{1}[n]+y_{2}[n]+y_{3}[n] \\
& =6+7 \delta[n-1]-7 \delta[n-2]+14 \delta[n-3]-7 \delta[n-4]+7 \delta[n-5]
\end{aligned}
$$

