PROBLEM 6.1*:

A linear time-invariant discrete-time system is described by the difference equation

$$
y[n]=-x[n]-2 x[n-1]-3 x[n-2]-4 x[n-3]
$$

(a) Replace $x[n]$ with $\delta[n]$ to get the impulse response $h[n]=-\delta[n]-2 \delta[n-1]-3 \delta[n-2]-4 \delta[n-3]$
(b) The filter coefficients b_{k} can be read from the difference equation: $\left\{b_{k}\right\}=\{-1,-2,-3-4\}$
(c) The order of the filter (M) is derived from the largest delay term, so $-4 x[n-3] \Rightarrow M=3$.

The length of the filter (L) is $L=M+1=4$; it is also the number of filter coefficients.
(d) Here is a plot of the shifted unit-step signal $s[n]=-u[n-20]$ which is zero up to $n=20$.

(e) The convolution table below computes the output due to the input $x[n]=u[n-1]-u[n-20]$

n	$n \leq 0$	0	1	2	3	4	5	\ldots	17	18	19	20	21	22	23	$n>23$
$x[n]$	0	0	1	1	1	1	1	\ldots	1	1	1	0	0	0	0	0
$h[n]$	0	-1	-2	-3	-4											
$h[0] x[n]$	0	0	-1	-1	-1	-1	-1	\ldots	-1	-1	-1	0	0	0	0	0
$h[1] x[n-1]$	0	0	0	-2	-2	-2	-2	\ldots	-2	-2	-2	-2	0	0	0	0
$h[2] x[n-2]$	0	0	0	0	-3	-3	-3	\ldots	-3	-3	-3	-3	-3	0	0	0
$h[3] x[n-3]$	0	0	0	0	0	-4	-4	\ldots	-4	-4	-4	-4	-4	-4	0	0
$y[n]$	0	0	-1	-3	-6	-10	-10	\ldots	-10	-10	-10	-9	-7	-4	0	0

Here is a plot of $y[n]$ over its nonzero range:

PROBLEM 6.2*:

For each of the following systems, determine if they are (1) linear; (2) time-invariant; (3) causal.
(a) $y[n]=x[n] x[n-1] \quad$ (Multiplier)
(1) Linear: No [Need a counter-example]

Consider the test signal $x_{1}[n]=u[n]$ for which the output is

$$
y_{1}[n]=u[n] u[n-1]=u[n-1]
$$

Then examine a second input signal $x_{2}[n]=2 u[n]$ which gives the output

$$
y_{2}[n]=2 u[n] 2 u[n-1]=4 u[n-1]
$$

Although $x_{2}[n]=2 x_{1}[n]$, it is clear that $y_{2}[n] \neq 2 y_{1}[n]$, so the scaling property of linearity does not hold.
(2) Time-Invariant: Yes

To prove this in general, let $v[n]=x\left[n-n_{d}\right]$ and then make $v[n]$ the input to the system. The corresponding output would be $w[n]=v[n] v[n-1]$ which becomes $w[n]=x\left[n-n_{d}\right] x\left[n-1-n_{d}\right]$. We must compare this result to a shifted version of the output, i.e., compare to $y\left[n-n_{d}\right]$. From the system definition, we get $y\left[n-n_{d}\right]=x\left[n-n_{d}\right] x\left[n-n_{d}-1\right]$. Since $w[n]=y\left[n-n_{d}\right]$ for any integer n_{d}, time invariance is true.

(3) Causal: Yes

Since the output is computed from the present input, $x[n]$ and the previous input, $x[n-1]$, no inputs from the future are required to compute $y[n]$.
(b) $y[n]=e^{j x[n-3]} \quad$ (Complex Exponential)
(1) Linear: No [Need a counter-example]

Consider the test signal $x_{1}[n]=\pi \delta[n]$ for which the output is

$$
y_{1}[n]=e^{j \pi \delta[n-3]}=1+e^{j \pi} \delta[n-3]=1-\delta[n-3]
$$

Then examine a second input signal $x_{2}[n]=2 \pi \delta[n]$ which gives the output

$$
y_{2}[n]=e^{j 2 \pi \delta[n-3]}=1+e^{j 2 \pi} \delta[n-3]=1+\delta[n-3]
$$

Although $x_{2}[n]=2 x_{1}[n]$, it is clear that $y_{2}[n] \neq 2 y_{1}[n]$, so the scaling property of linearity does not hold.
(2) Time-Invariant: Yes

To prove this in general, let $v[n]=x\left[n-n_{d}\right]$ and then make $v[n]$ the input to the system. The corresponding output would be $w[n]=e^{j v[n-3]}$ which becomes $w[n]=e^{j x\left[n-3-n_{d}\right]}$. We must compare this result to a shifted version of the output, i.e., compare to $y\left[n-n_{d}\right]$. From the system definition, we get $y\left[n-n_{d}\right]=e^{j x\left[n-n_{d}-3\right]}$. Since $w[n]=y\left[n-n_{d}\right]$ for any integer n_{d}, time invariance is true.
(3) Causal: Yes

Since the output is computed from a previous input, $x[n-3]$, no future inputs are required to compute $y[n]$.
Note: there is an argument that says the system is NOT causal, if you say that causality means that the output does not start before the input. Consider the input signal $x_{1}[n]=\pi \delta[n]$ for which the output is $y_{1}[n]=1-\delta[n-3]$. Since $x_{1}[n]$ starts at $n=0$, but $y_{1}[n]$ is already nonzero for $n<0$, it might be argued that the system in not causal. However, this is not the preferred interpretation.
(c) $y[n]=x\left[n^{2}-1\right] \quad$ (Time Distortion)
(1) Linear: Yes

Since the system operates on the n variable, the superposition and scaling properties will be true. Thus, we assume that $y_{1}[n]=x_{1}\left[n^{2}-1\right]$ and $y_{2}[n]=x_{2}\left[n^{2}-1\right]$. If we form $x_{3}[n]=\alpha x_{1}[n]+\beta x_{2}[n]$, then the corresponding output will be

$$
y_{3}[n]=\alpha x_{1}\left[n^{2}-1\right]+\beta x_{2}\left[n^{2}-1\right]=\alpha y_{1}[n]+\beta y_{2}[n]
$$

(2) Time-Invariant: No [Need a counter-example]

Consider the test signal $x_{1}[n]=\delta[n]$ for which the output is

$$
y_{1}[n]=\delta\left[n^{2}-1\right]=\delta[n+1]+\delta[n-1]
$$

And compare to the shifted input $x_{2}[n]=x_{1}[n+1]=\delta[n+1]$ where the output is

$$
y_{1}[n]=\delta\left[\left(n^{2}-1\right)+1\right]=\delta\left[n^{2}\right]=\delta[n]
$$

Since $y_{2}[n] \neq y_{1}[n+1]$, the system is not time-invariant.
(3) Causal: No [Need a counter-example]

Consider the test signal $x[n]=\delta[n]$ for which the output is $y[n]=\delta[n+1]+\delta[n-1]$. Although the input starts at $n=0$, the output starts at $n=-1$.
(a) $x[n]=u[n]$ and $y[n]=u[n-1]$
we need a "delay by one".

$$
\Rightarrow h[n]=\delta[n-1]
$$

(b) $x[n]=u[n]$ and $y[n]=\delta[n]$

Since $u[n]$ jumps from 0 to 1 at $n=0$, we need a filter that detects jumps. This can be done with a first-difference filter.

$$
h[n]=\delta[n]-\delta[n-1]
$$

(c) $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$ and $y[n]=\delta[n-1]$

Use the convolution sum to write linear equations:

$$
y[n]=\sum_{k=0}^{M} h[k] \times[n-k]
$$

$$
\begin{aligned}
y[0] & =h[0] \times[0]+h[1] \times[-1]+\ldots \quad h \quad \begin{array}{l}
\text { Note: } \times[n]=0 \\
\text { for } n<0
\end{array} \\
0 & =h[0]\left(\frac{1}{2}\right)^{0}=h[0] \Rightarrow h[0]=0 \\
y[1] & =h[0] \times[1]+h[1] \times[0]+h[2] \times[-1]+\cdots \\
1 & =0+h[1]\left(\frac{1}{2}\right)^{0}=h[1] \Rightarrow h[1]=1 \\
y[2] & =h[0] \times[2]+h[1] \times[1]+h[2] \times[2] \\
0 & =0+1\left(\frac{1}{2}\right)^{1}+h[2]\left(\frac{1}{2}\right)^{0} \\
0 & =\frac{1}{2}+h[2] \Rightarrow h[2]=-1 / 2 \\
y[3] & =h[0] \times[3]+h[1] \times[2]+h[2] \times[1]+h[3] \times[0] . \\
0 & =0+1\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\right)^{1}+h[3]\left[\frac{1}{2}\right)^{0} \\
0 & =0+\frac{1}{4}-\frac{1}{4}+h[3] \Rightarrow h[3]=0
\end{aligned}
$$

Similarly for $n>3$

$$
\therefore h[n]=\delta[n-1]-\frac{1}{2} \delta[n-2]
$$

6.4

$y y_{1}=x x\left(n * h_{1}(n)\right.$
$y y_{2}=x x\left(*+h_{2}(n)\right.$
$\omega \omega(n)=y y_{1}(n) y y z(n)$

$$
\begin{aligned}
\eta y(n) & =h_{3}(n) * w \omega(n) \\
& =\left[x x(n) * h_{1}(n)+x x(n) * h_{2}(n)\right] * h_{3}(n) \\
& =x x(n) * h_{1}(n) * h_{3}(n)+x \tau(n) * h_{2}(n) h_{3}(n) \\
& =x x(n) *\left[h_{1}(n) * h_{3}(n)+h_{2}(n) h_{3}(n)\right], \quad h_{4}(n)=h_{1}(n) * h_{3}(n)+h_{2}(n) * h_{3}(n) \\
y_{y}(n) & =x x(n) * h_{4}(n)
\end{aligned}
$$

$$
\begin{aligned}
& h_{1}[n]+h_{2}(n)=2 \delta(n)+2 \delta(n-3) \\
& h_{3}[n]=\delta(n)+\delta(n-1)+\delta(n-2) \\
& h_{\Delta}(n)= 2[\delta(n)+\delta(n-3)+\delta(n-1)+\delta(n-4) \\
&+\delta(n-2)+\delta(n-5)]
\end{aligned}
$$

se $y(n)=2[x(n)+x(n-\cdots)+x(n-2)+x(n-3)+x(n-4)$

$$
+x(n-z)]
$$

$y(n)$ is 12 times a 6 -point everger
sol. prob. 6.5:
(a)

(b)

$$
\begin{aligned}
& h[n]=h_{1}[n] * h_{2}[n] \\
& h_{2}[n]=\delta(n-1)-\delta(n)
\end{aligned}
$$

Conn. with $\delta(n-1)$: one delay

$$
\begin{aligned}
& " \delta(n) \quad n \theta \text { delay } \\
& h[n]= {[\delta(n-3)-\delta(n-1)] * \delta(n-1) } \\
&- {[\delta(n-3)-\delta(n-1)] * \delta(n) } \\
&= \delta(n-4)-\delta(n-2) \\
&-\delta(n-3)+\delta(n-1)
\end{aligned}
$$

(Can verify this wain Table.)
(c) convolve with $\delta\left(n-n_{0}\right)$: n_{0} delays

$$
\begin{aligned}
y(n) & =x(n) * h(n) \\
& =x(n-4)-x(n-3)-x(n-2) f x(n-1) \\
& =(n-4)^{2}[u(n-4)-u(n-14)]-(n-3)^{2}[u(n-3)-u(n-13)] \\
& -(n-2)^{2}[u(n-2)-u(n-12)]+(n-1)^{2}[u(n-1)-n(n-11)]
\end{aligned}
$$

6.6 $\quad y(n)=\sum_{k=0}^{M} b_{k} x(n-k)$
a) filter length $M+1$
b) $x(n)$ fo for $10 \leq n \leq 20$ \& $M=9$

$$
y(n)=\sum_{k=0}^{q} b_{k} x(n-k)
$$

furs non-zuo y $[10]=b_{0} x(10)+b_{1} x(9)+\ldots+b_{g} x(1)$
Index of last non- quo output sequence $y[29]$
(c) $x(n)$ is non bow for $N_{1} \leqslant n \leqslant N_{2}$
length of I/P sequence $N_{2}-N_{1}+1$
(d) $y(n)$ is non-jers for $N_{3} \leq n \leq N_{4}$

$$
\begin{aligned}
& N_{3}=10 \\
& N_{4}=20+M=29
\end{aligned}
$$

(e) 20 samples $=\mathrm{N}_{4}-\mathrm{N}_{3}+1$

