PROBLEM 6.1*:

A linear time-invariant discrete-time system is described by the difference equation

$$y[n] = -x[n] - 2x[n-1] - 3x[n-2] - 4x[n-3]$$

- (a) Replace x[n] with $\delta[n]$ to get the impulse response $h[n] = -\delta[n] 2\delta[n-1] 3\delta[n-2] 4\delta[n-3]$
- (b) The filter coefficients b_k can be read from the difference equation: $\{b_k\} = \{-1, -2, -3 4\}$
- (c) The *order* of the filter (*M*) is derived from the largest delay term, so $-4x[n-3] \Rightarrow M = 3$. The *length* of the filter (*L*) is L = M + 1 = 4; it is also the number of filter coefficients.
- (d) Here is a plot of the shifted unit-step signal s[n] = -u[n 20] which is zero up to n = 20.

(e) The convolution table below computes the output due to the input x[n] = u[n-1] - u[n-20]

n	$n \leq 0$	0	1	2	3	4	5	 17	18	19	20	21	22	23	n > 23
x[n]	0	0	1	1	1	1	1	 1	1	1	0	0	0	0	0
h[n]	0	-1	-2	-3	-4										
h[0]x[n]	0	0	-1	-1	-1	-1	-1	 -1	-1	-1	0	0	0	0	0
h[1]x[n-1]	0	0	0	-2	-2	-2	-2	 -2	-2	-2	-2	0	0	0	0
h[2]x[n-2]	0	0	0	0	-3	-3	-3	 -3	-3	-3	-3	-3	0	0	0
h[3]x[n-3]	0	0	0	0	0	-4	-4	 -4	-4	-4	-4	-4	-4	0	0
y[n]	0	0	-1	-3	-6	-10	-10	 -10	-10	-10	-9	-7	-4	0	0

Here is a plot of y[n] over its nonzero range:

PROBLEM 6.2*:

For each of the following systems, determine if they are (1) linear; (2) time-invariant; (3) causal.

(a) y[n] = x[n]x[n-1] (Multiplier)

(1) *Linear: No* [*Need a counter-example*] Consider the test signal $x_1[n] = u[n]$ for which the output is

 $y_1[n] = u[n]u[n-1] = u[n-1]$

Then examine a second input signal $x_2[n] = 2u[n]$ which gives the output

 $y_2[n] = 2u[n]2u[n-1] = 4u[n-1]$

Although $x_2[n] = 2x_1[n]$, it is clear that $y_2[n] \neq 2y_1[n]$, so the scaling property of linearity does not hold.

(2) Time-Invariant: Yes

To prove this in general, let $v[n] = x[n - n_d]$ and then make v[n] the input to the system. The corresponding output would be w[n] = v[n]v[n-1] which becomes $w[n] = x[n - n_d]x[n - 1 - n_d]$. We must compare this result to a shifted version of the output, i.e., compare to $y[n - n_d]$. From the system definition, we get $y[n - n_d] = x[n - n_d]x[n - n_d - 1]$. Since $w[n] = y[n - n_d]$ for any integer n_d , time invariance is true.

(3) Causal: Yes

Since the output is computed from the present input, x[n] and the previous input, x[n-1], no inputs from the future are required to compute y[n].

(b) $y[n] = e^{jx[n-3]}$ (Complex Exponential)

(1) *Linear: No* [*Need a counter-example*] Consider the test signal $x_1[n] = \pi \delta[n]$ for which the output is

$$y_1[n] = e^{j\pi\delta[n-3]} = 1 + e^{j\pi}\delta[n-3] = 1 - \delta[n-3]$$

Then examine a second input signal $x_2[n] = 2\pi \delta[n]$ which gives the output

 $y_2[n] = e^{j2\pi\delta[n-3]} = 1 + e^{j2\pi}\delta[n-3] = 1 + \delta[n-3]$

Although $x_2[n] = 2x_1[n]$, it is clear that $y_2[n] \neq 2y_1[n]$, so the scaling property of linearity does not hold.

(2) Time-Invariant: Yes

To prove this in general, let $v[n] = x[n - n_d]$ and then make v[n] the input to the system. The corresponding output would be $w[n] = e^{jv[n-3]}$ which becomes $w[n] = e^{jx[n-3-n_d]}$. We must compare this result to a shifted version of the output, i.e., compare to $y[n - n_d]$. From the system definition, we get $y[n - n_d] = e^{jx[n-n_d-3]}$. Since $w[n] = y[n - n_d]$ for any integer n_d , time invariance is true.

(3) Causal: Yes

Since the output is computed from a previous input, x[n-3], no future inputs are required to compute y[n].

Note: there is an argument that says the system is NOT causal, if you say that causality means that the output does not start before the input. Consider the input signal $x_1[n] = \pi \delta[n]$ for which the output is $y_1[n] = 1 - \delta[n-3]$. Since $x_1[n]$ starts at n = 0, but $y_1[n]$ is already nonzero for n < 0, it might be argued that the system in not causal. However, this is not the preferred interpretation.

(c) $y[n] = x[n^2 - 1]$ (Time Distortion)

(1) Linear: Yes

Since the system operates on the *n* variable, the superposition and scaling properties will be true. Thus, we assume that $y_1[n] = x_1[n^2 - 1]$ and $y_2[n] = x_2[n^2 - 1]$. If we form $x_3[n] = \alpha x_1[n] + \beta x_2[n]$, then the corresponding output will be

$$y_3[n] = \alpha x_1[n^2 - 1] + \beta x_2[n^2 - 1] = \alpha y_1[n] + \beta y_2[n]$$

(2) *Time-Invariant: No* [Need a counter-example] Consider the test signal $x_1[n] = \delta[n]$ for which the output is

$$y_1[n] = \delta[n^2 - 1] = \delta[n + 1] + \delta[n - 1]$$

And compare to the shifted input $x_2[n] = x_1[n+1] = \delta[n+1]$ where the output is

$$y_1[n] = \delta[(n^2 - 1) + 1] = \delta[n^2] = \delta[n]$$

Since $y_2[n] \neq y_1[n+1]$, the system is *not* time-invariant.

(3) *Causal: No* [Need a counter-example]

Consider the test signal $x[n] = \delta[n]$ for which the output is $y[n] = \delta[n+1] + \delta[n-1]$. Although the input starts at n = 0, the output starts at n = -1.

PROBLEM 6.3*:

(a)
$$x[n] = u[n]$$
 and $y[n] = u[n-1]$
We need a "delay by one".
=> $R[n] = \delta[n-1]$

Use the convolution sum to write linear
equations:

$$y[n] = \sum_{k=0}^{M} f_{k}[k] \times [n-k].$$

 $y[o] = f_{0}[o] \times [o] + f_{0}[1] \times [-1] + ...$
 $o = f_{0}[(\frac{1}{2})^{\circ} = f_{0}[o] \implies f_{0}[o] = 0$
 $y[i] = f_{0}[o] \times [i] + f_{0}[1] \times [o] + f_{0}[2] \times [-1] + ...$
 $1 = 0 + f_{0}[(\frac{1}{2})^{\circ} = f_{0}[1] \implies -f_{0}[i] = 1$
 $y[2] = f_{0}[o] \times [2] + f_{0}[1] \times [i] + f_{0}[2] \times [2]$
 $o = \frac{1}{2} + f_{0}[2] \implies f_{0}[2] + f_{0}[2] \times [2] + f_{0}[2] \times [2]$

$$\begin{array}{l} \begin{array}{c} f_{1}(f_{1},f_{2},f_{3}) = \int_{\mathbb{R}^{2}} f_{2}(f_{3}) + \int_{\mathbb{R}^{2}} f_{3}(f_{3}) + \int_{\mathbb{R}^{2}} f_{3}$$

sol. fuch. 6.5:
(a)
$$h_1[n] = \delta(n-3) - \delta(n-1)$$

 $h_1^{(n)}$
(b) $h[n] = h_1[n] + h_2[n]$
 $h_2[n] = \delta(n-1) - \delta(n)$
CURV. With $\delta(n-1)$: One delay
" " $\delta(n)$: ng delay
 $h[n] = [\delta(n-3) - \delta(n-1)] + \delta(n)$
 $- [\delta(n-3) - \delta(n-2)]$
 $- \delta(n-3) + \delta(n-1)$
(Can verify this using Teble)
(C) Convolute with $\delta(n-n_0)$: No deleys
 $g(n) = g(n-4) - g(n-3) - g(n-2) + g(n-1)$
 $= n(n-4) - g(n-3) - g(n-2) + g(n-1)$
 $= (n-4)^2 [u(n-4) - u(n-1e)] - (n-3)^2 [u(n-3) - u(n-13)]$
 $- (n-2)^2 [u(n-2) - u(n-12)] + (n-1)^2 [u(n-1) - n(n-11)]$

•.• •

Œ,

6.6
$$y(n) = \sum_{k=0}^{M} b_k \chi(n-k)$$

a) filter leugter M+1
b) $\chi(n) \neq 0$ for $10 \le n \le 20$ & $M=9$
 $y(n)_2 \xrightarrow{q} b_k \chi(n-k)$.
Fust non-guo $\gamma(10] = b_0 \chi(10) + b_1 \chi(9) + ... + b_q \chi(1)$
Index of last non-guo output sequence $\gamma(29)$
(c) $\chi(n)$ is non guo for $N, \le n \le N_2$
lengte of IJP sequence $N_2 = N_1 + 1$
(d) $y(n)$ is non-guo for $N_3 \le n \le N_4$ $N_3 = 10$
 $N_4 = 20 + M = 29$
(e) 20 Samples = $N_4 - N_3 + 1$