# GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

### ECE 2025 Spring 2004 Problem Set #3

Assigned: 16-Jan-04 Due Date: Week of 26-Jan-04

**Quiz #1 will be held in lecture on Monday 2-Feb-04.** It will cover material from Chapters 2 and 3, as represented in Problem Sets #1, #2 and #3.

Closed book, calculators permitted, and one hand-written formula sheet  $(8\frac{1}{2}'' \times 11'')$ , both sides)

Reading: In SP First, Chapter 3: Spectrum Representation, Sections 3-1, 3-2 and 3-3.

There is a web site for SP First text: www.ece.gatech.edu/~spfirst

 $\implies$  Please check the "Bulletin Board" often. All official course announcements are posted there.

**ALL** of the **STARRED** problems will have to be turned in for grading. A solution will be posted to the web. Some problems have solutions similar to those found on the CD-ROM.

**Your homework is due in recitation at the beginning of class.** After the beginning of your assigned recitation time, the homework is considered late and will be given a zero. Please follow the format guidelines (cover page, etc.) for homework.

### PROBLEM 3.1\*:

A real signal x(t) has the following two-sided spectrum:



- (a) Write an equation for x(t) as a sum of cosines.
- (b) Plot the spectrum of the signal:  $y(t) = x^2(t 0.01)$ .
- (c) Plot the spectrum of the *real-valued* signal:  $z(t) = 2x(t) \sin(200\pi t)$ .

#### PROBLEM 3.2\*:

The two-sided spectrum of a signal x(t) is given in the following table:

| Frequency     | Complex          |
|---------------|------------------|
| (rad/sec)     | Amplitude        |
| $-\omega_5$   | $X_{-5}$         |
| $-\pi$        | $-3 - j\sqrt{3}$ |
| 0             | В                |
| $\omega_2$    | $X_2$            |
| $2.5\omega_2$ | $2e^{j\pi/6}$    |

where  $\omega_5 > \omega_2$ , and B > 0.

- (a) If x(t) is a *real* signal, determine the numerical values of the parameters:  $X_{-5}$ ,  $X_2$ ,  $\omega_2$  and  $\omega_5$ .
- (b) Write an expression for x(t) involving only real numbers and cosine functions, so that the DC value of x(t) is equal to 4.
- (c) Determine the *fundamental period* of x(t), i.e., the minimum T > 0 such that x(t + T) = x(t).

#### PROBLEM 3.3\*:

A piano derives some of the richness of its sounds from multiple strings being hit by the same hammer for a particular note. Usually three strings are used for each note. Piano strings produce sounds which are not perfect sinusoids, but let's pretend they produce cosine waves.

The note A-440 (the A above Middle C) on a piano should be 440 Hz. Suppose that the three strings for A-440 are tuned to 436 Hz, 440 Hz and 444 Hz, and that all three strings produce exactly the same volume when the A-440 key is struck. The resulting sound that we hear will be the sum of three sinusoids:

$$x(t) = \cos(2\pi(436)t + \phi_1) + \cos(2\pi(440)t + \phi_2) + \cos(2\pi(444)t + \phi_3)$$

where the phases  $\phi_1$ ,  $\phi_2$ , and  $\phi_3$  depend on how the 3 strings are struck with the hammer.

(a) Consider the simplest case where all the phases are the same,  $\phi_1 = \phi_2 = \phi_3 = \pi/4$ . Show that the signal x(t) can be written as a sinusoid at the desired frequency of 440 Hz, multiplied by another function. In other words,

$$x(t) = e(t)\cos(2\pi(440)t + \pi/4)$$

Find e(t) as a simple real-valued function.

*Hint:* Use a derivation that writes x(t) as the real part of the sum of three complex exponentials.

(b) The signal e(t) is usually called the *envelope* because its frequency is low and it causes the amplitude of x(t) to go up and down slowly. Determine the time interval between the maximal peak locations of the low-frequency envelope.

### PROBLEM 3.4\*:

In AM radio, the transmitted signal is voice (or music) mixed with a *carrier signal*. The carrier is a sinusoid at the assigned broadcast frequency of the AM station. For example, WSB in Atlanta has a *carrier frequency* of 750 kHz. If we use the notation v(t) to denote the voice/music signal, then the actual transmitted signal for WSB could be written as:

$$x(t) = (v(t) + A)\cos(2\pi(750 \times 10^3)t)$$

where A is a constant.

*Note:* The constant A is introduced to make the AM receiver design easier, in which case A must be chosen to be larger than the maximum value of |v(t)|.

- (a) Voice-band signals tend to contain frequencies less than 4000 Hz (4 kHz). Suppose that v(t) is a 3000 Hz sinusoid,  $v(t) = 2\cos(2\pi(3000)t + 0.5\pi)$ . Draw the spectrum for v(t).
- (b) Now draw the spectrum for x(t), assuming a carrier at 750 kHz. Use v(t) from part (a) and assume that A = 2.5.

*Hint:* Express both v(t) and the cosine as a sum of complex exponentials, and then multiply.

# PROBLEM 3.5\*:

Several signals are plotted below along with their corresponding spectra. However, they are in a random order. For each of the signals (a)–(e), determine the correct spectrum (1)–(5). Explain your answers by deriving the formula for a time signal from each of the spectrum plots.

