GEORGIA INSTITUTE OF TECHNOLOGY

ECE 2025 Spring 2004
 Problem Set \#3

Quiz \#1 will be held in lecture on Monday 2-Feb-04. It will cover material from Chapters 2 and 3, as represented in Problem Sets \#1, \#2 and \#3.
Closed book, calculators permitted, and one hand-written formula sheet ($8 \frac{1^{\prime \prime}}{} \times 11^{\prime \prime}$, both sides)
Reading: In SP First, Chapter 3: Spectrum Representation, Sections 3-1, 3-2 and 3-3.
There is a web site for SP First text: www.ece.gatech.edu/~spfirst
\Longrightarrow Please check the "Bulletin Board" often. All official course announcements are posted there.
ALL of the STARRED problems will have to be turned in for grading. A solution will be posted to the web. Some problems have solutions similar to those found on the CD-ROM.

Your homework is due in recitation at the beginning of class. After the beginning of your assigned recitation time, the homework is considered late and will be given a zero.
Please follow the format guidelines (cover page, etc.) for homework.

PROBLEM 3.1*:

A real signal $x(t)$ has the following two-sided spectrum:

(a) Write an equation for $x(t)$ as a sum of cosines.
(b) Plot the spectrum of the signal: $\quad y(t)=x^{2}(t-0.01)$.
(c) Plot the spectrum of the real-valued signal: $\quad z(t)=2 x(t) \sin (200 \pi t)$.

PROBLEM 3.2*:

The two-sided spectrum of a signal $x(t)$ is given in the following table:

Frequency $(\mathrm{rad} / \mathrm{sec})$	Complex Amplitude
$-\omega_{5}$	X_{-5}
$-\pi$	$-3-j \sqrt{3}$
0	B
ω_{2}	X_{2}
$2.5 \omega_{2}$	$2 e^{j \pi / 6}$

where $\omega_{5}>\omega_{2}$, and $B>0$.
(a) If $x(t)$ is a real signal, determine the numerical values of the parameters: $X_{-5}, X_{2}, \omega_{2}$ and ω_{5}.
(b) Write an expression for $x(t)$ involving only real numbers and cosine functions, so that the DC value of $x(t)$ is equal to 4 .
(c) Determine the fundamental period of $x(t)$, i.e., the minimum $T>0$ such that $x(t+T)=x(t)$.

PROBLEM 3.3*:

A piano derives some of the richness of its sounds from multiple strings being hit by the same hammer for a particular note. Usually three strings are used for each note. Piano strings produce sounds which are not perfect sinusoids, but let's pretend they produce cosine waves.

The note A-440 (the A above Middle C) on a piano should be 440 Hz . Suppose that the three strings for A-440 are tuned to $436 \mathrm{~Hz}, 440 \mathrm{~Hz}$ and 444 Hz , and that all three strings produce exactly the same volume when the A-440 key is struck. The resulting sound that we hear will be the sum of three sinusoids:

$$
x(t)=\cos \left(2 \pi(436) t+\phi_{1}\right)+\cos \left(2 \pi(440) t+\phi_{2}\right)+\cos \left(2 \pi(444) t+\phi_{3}\right)
$$

where the phases ϕ_{1}, ϕ_{2}, and ϕ_{3} depend on how the 3 strings are struck with the hammer.
(a) Consider the simplest case where all the phases are the same, $\phi_{1}=\phi_{2}=\phi_{3}=\pi / 4$. Show that the signal $x(t)$ can be written as a sinusoid at the desired frequency of 440 Hz , multiplied by another function. In other words,

$$
x(t)=e(t) \cos (2 \pi(440) t+\pi / 4)
$$

Find $e(t)$ as a simple real-valued function.
Hint: Use a derivation that writes $x(t)$ as the real part of the sum of three complex exponentials.
(b) The signal $e(t)$ is usually called the envelope because its frequency is low and and it causes the amplitude of $x(t)$ to go up and down slowly. Determine the time interval between the maximal peak locations of the low-frequency envelope.

PROBLEM 3.4*:

In AM radio, the transmitted signal is voice (or music) mixed with a carrier signal. The carrier is a sinusoid at the assigned broadcast frequency of the AM station. For example, WSB in Atlanta has a carrier frequency of 750 kHz . If we use the notation $v(t)$ to denote the voice/music signal, then the actual transmitted signal for WSB could be written as:

$$
x(t)=(v(t)+A) \cos \left(2 \pi\left(750 \times 10^{3}\right) t\right)
$$

where A is a constant.
Note: The constant A is introduced to make the AM receiver design easier, in which case A must be chosen to be larger than the maximum value of $|v(t)|$.
(a) Voice-band signals tend to contain frequencies less than $4000 \mathrm{~Hz}(4 \mathrm{kHz})$. Suppose that $v(t)$ is a 3000 Hz sinusoid, $v(t)=2 \cos (2 \pi(3000) t+0.5 \pi)$. Draw the spectrum for $v(t)$.
(b) Now draw the spectrum for $x(t)$, assuming a carrier at 750 kHz . Use $v(t)$ from part (a) and assume that $A=2.5$.
Hint: Express both $v(t)$ and the cosine as a sum of complex exponentials, and then multiply.

PROBLEM 3.5*:

Several signals are plotted below along with their corresponding spectra. However, they are in a random order. For each of the signals (a)-(e), determine the correct spectrum (1)-(5). Explain your answers by deriving the formula for a time signal from each of the spectrum plots.
(a)

(1)

(2)

(c)

(3)

(d)

(4)

(e)

(5)

