ECE-2025
Spring-2004
Solutions HW \#1

PROBLEM 1.1*:
(a) $z=j 2$

$$
z=2 e^{j \pi / 2}=2 \angle 90^{\circ}
$$

(b)

$$
\begin{aligned}
& z=-1+j \\
& (-1,1)=(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& \theta=135^{\circ}=3 \pi / 4 \text { radians } \\
& r=\sqrt{1^{2}+1^{2}}=\sqrt{2} \\
& z=\sqrt{2} e^{j 3 \pi / 4}=\sqrt{2} e^{j 2.356}
\end{aligned}
$$

(C) $z=-3-j 4$

$$
\begin{aligned}
& r=\sqrt{3^{2}+4^{2}}=5 \quad 5 L-126.87^{\circ} \\
& \theta=\operatorname{Tan}^{-1}\left(\frac{-4}{-3}\right)=-126.87^{\circ}
\end{aligned}
$$

convect to radians: $-126.87\left(\frac{\pi}{180}\right)=-2.21=-0.705 \pi$

$$
z=5 e^{-j 0.705 \pi}=5 e^{-j 2.21}
$$

(d)

$$
\theta=-90^{\circ}=-\pi / 2 \text { rads. }
$$

$z=1 e^{-j \pi / 2}$

PROBLEM 1.2*:
(a) $z=\sqrt{2} e^{j 3 \pi / 4}$

$$
z=\sqrt{2}\left(\cos \frac{3 \pi}{4}+j \sin \frac{3 \pi}{4}\right)=\sqrt{2}\left(-\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}\right)=-1+j 1
$$

(b)

$$
\begin{aligned}
z & =1.6 \angle \pi / 6=1.6 e^{j \pi / 6}=1.6\left(\cos \frac{\pi}{6}+j \sin \pi / 6\right) \\
& =1.6 \angle 30^{\circ} \quad=1.6\left(\frac{\sqrt{3}}{2}+j \frac{1}{2}\right)=1.386+j 0.8
\end{aligned}
$$

(c)

$$
z=3 e^{-j \pi / 2}=3 \angle-90^{\circ} \frac{1}{3-90^{\circ}} \quad z=-3 j
$$

(d)

$$
\begin{aligned}
z & =7 \angle 7 \pi=7 \angle \pi=7 e^{j \pi}=-7+j 0 \quad\left(\begin{array}{l}
\text { subtract multiple } \\
\text { of } 2 \pi
\end{array}\right. \\
& =7 \angle 1260^{\circ}
\end{aligned}
$$

PROBLEM 1.3*:
(a)

$$
\left.\begin{array}{l}
z=-3+j 4=5 e^{j 0.705 \pi} \\
\frac{1}{z}=\frac{1}{5} e^{-j 0.705 \pi}
\end{array} \quad \text { (ANGLE=126.87 } \text { or } 2.214 \mathrm{rads}\right)
$$

(b)

$$
\begin{aligned}
& z=-2+j 2=2 \sqrt{2} e^{j 3 \pi / 4} \\
& z^{5}=(2 \sqrt{2})^{5} e^{j 15 \pi / 4}=128 \sqrt{2} e^{-j \pi / 4}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& z=-5+j 13 \\
& |z|^{2}=z z^{*}=(-5+j 13)(-5-j 13) \\
& =
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \operatorname{Re}\left\{(-2+j 5) e^{-j \pi / 2}\right\} \\
= & \operatorname{Re}\{(-2+j 5)(-j)\} \\
= & \operatorname{Re}\{2 j+5\}=5
\end{aligned}
$$

PROBLEM 1.4*:

Plot two periods of the following sinusoids with $t=0$ in the middle (i.e., for $-T \leq t \leq T$):
(a) $x(t)=\pi \cos ((\pi / 10) t+0.5 \pi)$

Solution:

The period is $T=2 \pi / \omega_{0}=2 \pi /(\pi / 10)=20 \mathrm{~s}$.
The time of a maximum is $t_{m}=-\phi / \omega_{0}=-0.5 \pi /(\pi / 10)=5 \mathrm{~s}$.

(b) $x(t)=\pi^{2} \cos ((\pi / 10) t+e)$

Solution:

The period is $T=2 \pi / \omega_{0}=2 \pi /(\pi / 10)=20 \mathrm{~s}$.
The time of a maximum is $t_{m}=-\phi / \omega_{0}=-e /(\pi / 10)=-2.718 /(\pi / 10)=8.65 \mathrm{~s}$.

(c) $x(t)=\sqrt{\pi} \cos (10 \pi t-7.7 \pi)$

Solution:

The period is $T=2 \pi / \omega_{0}=2 \pi /(10 \pi)=0.2 \mathrm{~s}$.
The time of a maximum is $t_{m}=-\phi / \omega_{0}=-(-7.7 \pi) /(10 \pi)=0.77 \mathrm{~s}$. If we want to get the peak closest to $t=0$, then we must reduce ϕ modulo -2π so that it is within the interval $-\pi<\phi \leq \pi$. We can do this by adding a multiple of 2π to ϕ; in this case, $4(2 \pi)-7.7 \pi=0.3 \pi$. Then $t_{m}=-\phi / \omega_{0}=-(0.3 \pi) /(10 \pi)=-0.03 \mathrm{~s}$.

PROBLEM 1.4*:

The waveform in the figure generated from the MatLab GUI sindrill can be expressed as

$$
x(t)=A \cos \left[\omega_{0}\left(t-t_{d}\right)\right]=A \cos \left(\omega_{0} t+\phi\right)=A \cos \left(2 \pi f_{0} t+\phi\right)
$$

From the waveform, it is easy to see that $A=10$ and the period is $T=0.01 \mathrm{~s}$. Furthermore, the time of the positive maximum nearest to $t=0$ is $t_{m} \approx-0.004 \mathrm{~s}$.
From these measurements, we can calculate the frequency

$$
\omega_{0}=2 \pi / T=2 \pi /(0.01)=200 \pi \mathrm{rad} / \mathrm{s}, \text { or } f_{0}=100 \mathrm{~Hz}
$$

and the time delay $t_{d}=t_{m}=-0.004 \mathrm{~s}$; and the phase

$$
\phi=-\omega T=-(200 \pi)(-0.004)=0.8 \pi \text { radians }
$$

This value of ϕ satisfies $-\pi<\phi \leq \pi$.
Note: The true value of the phase is $\phi=0.75 \pi$, but it would be hard to get that exact value from the plot.

