ECE-2025 Fall-00

LECTURE OBJECTIVES for ALL 26 Lectures

COURSE OBJECTIVE

- Students will be able to:
- Understand mathematical descriptions of signal processing algorithms and express those algorithms as computer implementations (MATLAB)

12/30/00 ECE-2025 2000 rws/jMc

LECTURE #1

- Write general formula for a "sinusoidal" waveform, or signal
- From the formula, plot the sinusoid versus time
- What's a signal?
 - It's a **function** of time, x(t)
 - I in the mathematical sense

LECTURE #2

- Define Sinusoid from a plot
- Relate TIME-SHIFT to PHASE
- Introduce an **ABSTRACTION**:
 - I Complex Numbers represent Sinusoids
 - Complex Exponential Signal

12/30/00 ECE-2025 2000 rws/jMc 3 12/30/00 ECE-2025 2000 rws/jMc 4

- Phasors = Complex Amplitude
 - I Complex Numbers represent Sinusoids

$$z(t) = Xe^{j\omega t} = (Ae^{j\varphi})e^{j\omega t}$$

- Develop the ABSTRACTION:
 - Adding Sinusoids = Complex Addition
 - I PHASOR ADDITION THEOREM

12/30/00 ECE-2025 2000 rws/jMc

LECTURE #4

- Sinusoids with DIFFERENT Frequencies
 - SYNTHESIZE by Adding Sinusoids

$$x(t) = \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

- **SPECTRUM Representation**
 - I Graphical Form shows **DIFFERENT** Freqs

12/30/00 ECE-2025 2000 rws/jMc

LECTURE #5

- Signals with <u>HARMONIC</u> Frequencies
 - Add Sinusoids with $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t) + \varphi_k)$$

- FREQUENCY can change vs. TIME
 - Chirps: $x(t) = \cos(\alpha t^2)$

LECTURE #6

■ Work with the Fourier Series Integral

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi k/T_0)t} dt$$

- **ANALYSIS** via Fourier Series
 - For PERIODIC signals: x(t+T) = x(t)
 - I SPECTRUM from the Fourier Series

12/30/00 ECE-2025 2000 rws/jMc 7 12/30/00 ECE-2025 2000 rws/jMc 8

- SAMPLING can cause ALIASING
 - Sampling Theorem
 - Sampling Rate > 2(Highest Frequency)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$
ALIASING

12/30/00

ECE-2025 2000 rws/jMc

0

LECTURE #8

- FOLDING: a type of ALIASING
- DIGITAL-to-ANALOG CONVERSION is
 - Reconstruction from samples
 - | SAMPLING THEOREM applies
 - Smooth Interpolation
- Mathematical Model of D-to-A
 - **■** SUM of SHIFTED PULSES
 - Linear Interpolation example

12/30/00 ECE-2025 2000 rws/iMc

10

LECTURE #9

- INTRODUCE FILTERING IDEA
 - Weighted Average
 - Running Average
- **■** FINITE IMPULSE RESPONSE FILTERS
 - **FIR** Filters
 - Show how to compute the output y[n] from the input signal, x[n]

LECTURE #10

- BLOCK DIAGRAM REPRESENTATION
 - Components for Hardware
 - Connect Simple Filters Together to Build More Complicated Systems
- GENERAL PROPERTIES of FILTERS
 - **LINEARITY**
 - TIME-INVARIANCE

LTI SYSTEMS

==> CONVOLUTION

12/30/00 ECE-2025 2000 rws/iMc 11 12/30/00 ECE-2025 2000 rws/iMc 12

- **I SINUSOIDAL INPUT SIGNAL**
 - I DETERMINE the FIR FILTER OUTPUT

■ FREQUENCY RESPONSE of FIR

I PLOTTING vs. Frequency

■ MAGNITUDE vs. Freq

■ PHASE vs. Freq

 $H(\hat{\omega}) = |H(\hat{\omega})| e^{j\phi(\hat{\omega})}$

MAG

PHASE

12/30/00 ECE-2025 2000 rws/jMc

LECTURE #12

- Two Domains: Time & Frequency
- Track the spectrum of x[n] thru an FIR Filter.
- **UNIFICATION**: How does Frequency Response affect x(t) to produce y(t)?

LECTURE #13

- INTRODUCE the 7-TRANSFORM
 - I Give Mathematical Definition
 - Show how the H(z) POLYNOMIAL simplifies analysis
 - | CONVOLUTION EXAMPLE
- Z-Transform can be applied to
 - FIR Filter: h[n] --> H(z)
 - I Signals: x[n] --> X(z)

$$H(z) = \sum_{n} h[n] z^{-n}$$

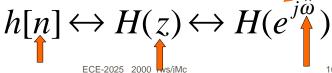
15

LECTURE #14

- ZEROS and POLES
- Relate H(z) to FREQUENCY RESPONSE

$$H(\hat{\omega}) = H(z)|_{z=e^{j\hat{\omega}}}$$

- THREE DOMAINS:
 - I Show Relationship for FIR:



12/30/00 ECE-2025 2000 rws/jMc

12/30/00

16

LECTURE #15 (Review)

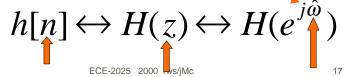
- ZEROS and POLES
- Relate H(z) to FREQUENCY RESPONSE

$$H(\hat{\omega}) = H(z)|_{z=e^{j\hat{\omega}}}$$

■ THREE DOMAINS:

12/30/00

I Show Relationship for FIR:



LECTURE #16

- Bye bye to D-T Systems for a while
- The <u>UNIT IMPULSE</u> signal
 - Definition
 - Properties
- Continuous-time signals and systems
 - Example systems
 - Review: Linearity and Time-Invariance
 - I Convolution integral: impulse response

12/30/00 ECE-2025 2000 rws/jMc 18

LECTURE #17

- Review of C-T LTI systems
- Evaluating convolutions
 - Examples
 - Impulses
- LTI Systems
 - Cascade and parallel connections
 - Stability and causality

LECTURE #18

- Review of convolution
 - I THE operation for LTI Systems
- Complex exponential input signals
 - Frequency Response
 - Cosine signals
 - Real part of complex exponential
- Fourier Series thru $H(j\omega)$
 - I These are Analog Filters

12/30/00 ECE-2025 2000 rws/jMc 19 12/30/00 ECE-2025 2000 rws/jMc 20

- Review
 - Frequency Response
 - Fourier Series
- Definition of Fourier transform

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Relation to Fourier Series

Examples of Fourier transform pairs

12/30/00 ECE-2025 2000 rws/jMc

LECTURE #20

The Fourier transform

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

- More examples of Fourier transform pairs
- Basic properties of Fourier transforms
 - Convolution property
 - Multiplication property

12/30/00 ECE-2025 2000 rws/jMc 22

LECTURE #21

- Review of FT properties
 - Convolution <--> multiplication
 - Frequency shifting
- Sinewave Amplitude Modulation
 - AM radio
- Frequency-division multiplexing
 - FDM

LECTURE #22

- Sampling Theorem Revisited
 - GENERAL: in the FREQUENCY DOMAIN
 - Fourier transform of sampled signal
 - Reconstruction from samples
- Review of FT properties
 - Convolution <--> multiplication
 - Frequency shifting
 - Review of AM

12/30/00 ECE-2025 2000 rws/iMc 23 12/30/00 ECE-2025 2000 rws/iMc 2

21

INFINITE IMPULSE RESPONSE FILTERS

- **■** Define **■** DIGITAL Filters
- I Have **FEEDBACK**: use PREVIOUS OUTPUTS

$$y[n] = \sum_{\ell=1}^{N} a_{\ell} y[n-\ell] + \sum_{k=0}^{M} b_{k} x[n-k]$$

- I Show how to compute the output y[n]
 - | FIRST-ORDER CASE (N=1)
 - | Z-transform: Impulse Response h[n] <--> H(z)

12/30/00 ECE-2025 2000 rws/jMc 25

LECTURE #24

- SYSTEM FUNCTION: H(z)
- H(z) has <u>POLES</u> and ZEROS
- FREQUENCY RESPONSE of IIR
 - Get H(z) first

$$H(e^{j\hat{\omega}}) = H(z)|_{z=e^{j\hat{\omega}}}$$

THREE-DOMAIN APPROACH

$$h[n] \longleftrightarrow H(z) \longleftrightarrow H(e^{j\hat{\omega}})$$

$$\downarrow \text{ECE-2025 2000 ws/jMc}$$

26

LECTURE #25

- Discrete-Time Filtering of Continuous-Time Signals
 - Basic Configuration
 - \bullet CT Input -> A/D -> DT System -> D/A -> CT Output

EFFECTIVE FREQUENCY RESPONSE

- For Bandlimited Input Signals
- Relies on the General Version of the Sampling Theorem

LECTURE #26

- THREE-DOMAIN APPROACH
 - **I FXHIBIT BANDPASS FILTERS**
- RE-UNIFICATION:
 - How does Frequency Response affect x(t) to produce y(t) ?

$$\begin{array}{c|c}
x(t) & \xrightarrow{x[n]} & H(z) & \xrightarrow{y[n]} & D-to-A & \xrightarrow{y(t)} \\
\end{array}$$

27

12/30/00