LECTURE #1 OBJECTIVES

Write general formula for a
“sinusoidal” waveform, or signal

From the formula, plot the sinusoid
versus time

What’s a signal?
It’s a function of time, x(t)
in the mathematical sense
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LECTURE #2 OBJECTIVES

Relate TIME-SHIFT to PHASE

Introduce an ABSTRACTION:
Complex Numbers represent Sinusoids
Complex Exponential Signal

Z(t) = zel“

11/19/98 EE-2200 Fall-98 jMc 3

LECTURE #3 OBJECTIVES

Phasors = Complex Amplitude
Add Sinusoids = Complex Addition
PHASOR ADDITION THEOREM

Z(t) = Zel“* = (Ae'?)e!

Develop the ABSTRACTION:
Complex Numbers represent Sinusoids
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LECTURE #4 OBJECTIVES

Sinusoids with DIFFERENT Frequencies
Add Sinusoids

X(t) = i A cos(2rf t +¢,)

SPECTRUM Representation
Graphical Form shows Different Freqs
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LECTURE #5 OBJECTIVES

Signals with HARMONIC Frequencies

Add Sinusoids with f, = kf,
N

X(t) = Ay + Z A cos(2rikdft + ¢, )

ANALYSIS via Fourier Series
For PERIODIC signals: x(t+T) = x(t)
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LECTURE #6 OBJECTIVES

Frequency can change vs. time
Basis of Frequency Modulation (FM)
Define “instantaneous frequency”

Chirp Signals (LFM)

Quadratic phase
x(t) = Acos(at® + 2rtf t + ¢)
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LECTURE #7 OBJECTIVES

SAMPLING can cause ALIASING
Sampling Theorem
Sampling Rate > 2(Highest Frequency)
Spectrum for digital signals, x[n]
Normalized Frequency

cb:wTszg

S
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LECTURE #8 OBJECTIVES

DIGITAL-to-ANALOG CONVERSION is
Reconstructing x(t) from its samples
SAMPLING THEOREM applies
Smooth Interpolation
Mathematical Model of D-to-A
SUM of SHIFTED PULSES
Linear Interpolation example
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LECTURE #9 OBJECTIVES

INTRODUCE FILTERING IDEA
Weighted Average
Running Average

FINITE IMPULSE RESPONSE FILTERS

M

FIR Filters vin] = Z b.x{n—k]

Show how to compute the output y[n]
from the input signal, x[n]
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LECTURE #10

BLOCK DIAGRAM REPRESENTATION
Components for Hardware

Connect Simple Filters Together to Build
More Complicated Systems

GENERAL PROPERTIES of FILTERS

HINEARITY
TIME-INVARIANCE
==> CONVOLUTION
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LECTURE #11

SINUSOIDAL INPUT SIGNAL
DETERMINE FIR OUTPUT

FREQUENCY RESPONSE of FIR MAG

MAGNITUDE vs. Frequency
PHASE vs. Freq

PLOTTING: H(&)) — ‘H(&))‘ej‘b(&))
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LECTURE #12

DIGITAL PROCESSING of ANALOG
SIGNALS

UNIFICATION:

How does Frequency Response affect
Xx(t) to produce y(t) ?

XY A-to-D xnl, H(C:)) yni, D-to-A 0,
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LECTURE #13

INTRODUCE the Z-TRANSFORM
Give Mathematical Definition

Show how H(z) POLYNOMIAL simplifies
analysis
CASCADE EXAMPLE

Z-Transform can be applied to

FIR Filter: h[n] -—> H(2) _ n
Signals: x[n] --> X(2) H(@) = Z hinjz
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LECTURE #14

Relate H(z) to FREQUENCY RESPONSE
H(w) = H(2)

Zeros of H(2)
THREE DOMAINS:
Show Relationship for FIR:

hin] - H(2) - H(E"®)
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z=e!®

LECTURE #15

INFINITE IMPULSE RESPONSE FILTERS

IIR Filters
Have FEEDBA\C K: PREVIOUS OUTPUTS

yin] = Zaé\)‘/[n—f]+ZQKx[n—k]

Show how to compute the output y[n]
FIRST-ORDER CASE (N=1)
h[n] <--> H(2)
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LECTURE #16

FREQUENCY RESPONSE of IIR
Get H(2) first

H('®) = H(2)-q0

H(z) has POLES and ZEROS
THREE-DOMAIN APPROACH
Get h[n] from H(2)
Get STRUCTURES from H(z)
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LECTURE #17

SECOND-ORDER IIR FILTERS
TWO FEEDBACK TERMS

yinl=ayn-1]+a,y{n-2] +Zbkx[n—k]

H(z) can have COMPLEX POLES & ZEROS
THREE-DOMAIN APPROACH

UNIFIES h[n] & FREQUENCY RESPONSE in
terms of POLES and ZEROS

11/19/98 EE-2200 Fall-98 jMc 18

LECTURE #18

THREE-DOMAIN APPROACH
EXHIBIT BANDPASS FILTERS
RE-UNIFICATION:

How does Frequency Response affect
Xx(t) to produce y(t) ?

) A-to-D "‘/”/: H (Z) "'/"/: D-to-A iU >

Y
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