LECTURE #1 OBJECTIVES

- Write general formula for a "sinusoidal" waveform, or signal
- From the formula, plot the sinusoid versus time
- What's a signal?
 - It's a function of time, x(t)
 - I in the mathematical sense

11/19/98

EE-2200 Fall-98 jMc

LECTURE #2 OBJECTIVES

- Relate TIME-SHIFT to PHASE
- Introduce an ABSTRACTION:
 - **I Complex Numbers represent Sinusoids**
 - Complex Exponential Signal

$$z(t) = Ze^{j\omega t}$$

11/19/98

EE-2200 Fall-98 jMc

LECTURE #3 OBJECTIVES

- **■** Phasors = Complex Amplitude
 - Add Sinusoids = Complex Addition
 - PHASOR ADDITION THEOREM

$$z(t) = Ze^{j\omega t} = (Ae^{j\varphi})e^{j\omega t}$$

- Develop the ABSTRACTION:
 - I Complex Numbers represent Sinusoids

11/19/98

EE-2200 Fall-98 jMc

LECTURE #4 OBJECTIVES

- **Sinusoids with DIFFERENT Frequencies**
 - Add Sinusoids

$$x(t) = \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

- SPECTRUM Representation
 - I Graphical Form shows Different Freqs

11/19/98

EE-2200 Fall-98 jMc

LECTURE #5 OBJECTIVES

- Signals with HARMONIC Frequencies
 - Add Sinusoids with $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

- **ANALYSIS** via Fourier Series
 - **I For PERIODIC signals:** x(t+T) = x(t)

11/19/98

EE-2200 Fall-98 jMc

LECTURE #6 OBJECTIVES

- I Frequency can change vs. time
 - Basis of Frequency Modulation (FM)
 - Define "instantaneous frequency"
- Chirp Signals (LFM)
 - Quadratic phase

$$x(t) = A\cos(\alpha t^2 + 2\pi f_0 t + \varphi)$$

11/19/98

EE-2200 Fall-98 jMc

LECTURE #7 OBJECTIVES

- SAMPLING can cause ALIASING
 - I Sampling Theorem
 - Sampling Rate > 2(Highest Frequency)
- **■** Spectrum for digital signals, x[n]
 - I Normalized Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

11/19/98

EE-2200 Fall-98 iMc

LECTURE #8 OBJECTIVES

- **DIGITAL-to-ANALOG CONVERSION is**
 - Reconstructing x(t) from its samples SAMPLING THEOREM applies
 - **I Smooth Interpolation**
- Mathematical Model of D-to-A
 - **I SUM of SHIFTED PULSES**
 - | Linear Interpolation example

11/19/98

EE-2200 Fall-98 jMc

LECTURE #9 OBJECTIVES

- INTRODUCE FILTERING IDEA
 - **I Weighted Average**
 - **| Running Average**
- **I FINITE IMPULSE RESPONSE FILTERS**

I FIR Filters

Show how to compute the output y[n] from the input signal, x[n]

11/19/98

EE-2200 Fall-98 iMc

LECTURE #10

- **BLOCK DIAGRAM REPRESENTATION**
 - **I** Components for Hardware
 - I Connect Simple Filters Together to Build **More Complicated Systems**
- **GENERAL PROPERTIES of FILTERS**
 - **LINEARITY**

LTI SYSTEMS

- TIME-INVARIANCE
- ==> CONVOLUTION

11/19/98

EE-2200 Fall-98 iMc

11

13

LECTURE #11

- **I SINUSOIDAL INPUT SIGNAL**
 - **I DETERMINE FIR OUTPUT**
- **FREQUENCY RESPONSE of FIR**

MAG

PHASE

12

10

■ MAGNITUDE vs. Frequency

PHASE vs. Freq

| PLOTTING:

 $H(\hat{\omega}) = |\hat{H}(\hat{\omega})| e^{j\hat{\varphi}(\hat{\omega})}$

11/19/98

EE-2200 Fall-98 jMc

LECTURE #12

- DIGITAL PROCESSING of ANALOG **SIGNALS**
- **UNIFICATION:**
 - I How does Frequency Response affect x(t) to produce y(t)?

11/19/98

FF-2200 Fall-98 iMc

LECTURE #13

- INTRODUCE the Z-TRANSFORM
 - **I** Give Mathematical Definition
 - I Show how H(z) POLYNOMIAL simplifies analysis
 - CASCADE EXAMPLE
- Z-Transform can be applied to
 - FIR Filter: h[n] --> H(z)
 - | Signals: x[n] --> X(z)

$$H(z) = \sum_{n} h[n] z^{-n}$$

11/19/98

EE-2200 Fall-98 jMc

LECTURE #14

■ Relate H(z) to FREQUENCY RESPONSE

$$H(\hat{\omega}) = H(z)|_{z=e^{j\hat{\omega}}}$$

- Zeros of H(z)
- THREE DOMAINS:
 - Show Relationship for FIR:

$$h[n] \leftrightarrow H(z) \leftrightarrow \hat{H}(e^{j\hat{\omega}})$$

11/19/98

EE-2200 Fall-98 jMc

LECTURE #15

- INFINITE IMPULSE RESPONSE FILTERS
 - **I IIR Filters**
 - I Have FEEDBACK: PREVIOUS OUTPUTS

$$y[n] = \sum_{\ell=1}^{N} a_{\ell} y[n-\ell] + \sum_{k=0}^{M} b_{k} x[n-k]$$

- Show how to compute the output y[n]
 - FIRST-ORDER CASE (N=1)
 - | h[n] <--> H(z)

11/19/98

EE-2200 Fall-98 jMc

LECTURE #16

- **FREQUENCY RESPONSE of IIR**
 - Get H(z) first

$$H(e^{j\hat{\omega}}) = H(z)\big|_{z=e^{j\hat{\omega}}}$$

17

- H(z) has POLES and ZEROS
- THREE-DOMAIN APPROACH
 - Get h[n] from H(z)
 - **■** Get STRUCTURES from H(z)

11/19/98

16

18

EE-2200 Fall-98 jMc

LECTURE #17

- **SECOND-ORDER IIR FILTERS**
 - I TWO FEEDBACK TERMS

$$y[n] = a_1 y[n-1] + a_2 y[n-2] + \sum_{k=0}^{2} b_k x[n-k]$$

- **■** H(z) can have **COMPLEX POLES** & **ZEROS**
- **THREE-DOMAIN APPROACH**
 - UNIFIES h[n] & FREQUENCY RESPONSE in terms of POLES and ZEROS

11/19/98

EE-2200 Fall-98 jMc

LECTURE #18

- **THREE-DOMAIN APPROACH**
 - **EXHIBIT BANDPASS FILTERS**
- **RE-UNIFICATION:**
 - I How does Frequency Response affect x(t) to produce y(t)?

11/19/98

EE-2200 Fall-98 jMc