GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

EE3230 Problem Set No. 4

Date Assigned: April 24, 1998 Date Due: May 1, 1998

Reading Assignment: In Oppenheim and Willsky, read all of Chapter 4 and read pp.

516-534 and 583-597 in Chapter 8.

Homework Assignment: Problems 4.1 - 4.5 were assigned last quarter. You can find their solutions on the web. I will not be publishing solutions on these. Hand in for grading only Problems 4.1* and 4.2*.

Practice Problems:

- (a) Work Problem 4.23 in O & W. (See solution to Problem 4.3, winter 98.)
- (b) Work Problem 4.26(b) in O & W. (See solution to Problem 4.4, winter 98.)
- (c) Work Problem 4.28(a) and 4.28(b-ii) and (b-viii) in O & W. (See solution to Problem 4.5, winter 98.)
- (d) Work Problem 8.22 in O & W. (See solution to Problem 5.4, winter 98.)
- (e) Work Problem 8.22 in O & W. (See solution to Problem 6.1, winter 98.)

Problem 4.1*

The input signal for the above sampling/reconstruction system is

$$x(t) = 2\cos(100\pi t) + \cos(200\pi t + \pi/3)$$
 $-\infty < t < \infty$

and the frequency response of the lowpass reconstruction filter is

$$H_r(j\omega) = \begin{cases} T & |\omega| < \pi/T \\ 0 & |\omega| > \pi/T \end{cases}$$

where T is the sampling period.

- (a) Sketch the Fourier transform $X_p(j\omega)$ for $-2\pi/T < \omega < 2\pi/T$ for the case where $2\pi/T > 400\pi$. Carefully label your sketch to receive full credit.
- (b) Now assume that $\omega_s = 2\pi/T = 200\pi$. Determine an equation for the output $x_r(t)$.

Problem 4.2*:

Consider the following modulation/filtering system:

The impulse response of the LTI system is: $h(t) = \begin{cases} 1/T & |t| < T/2 \\ 0 & |t| > T/2 \end{cases}$

- (a) Determine the frequency response of the LTI system and plot it.
- (b) Suppose that $\omega_0 = 2\pi/T$ and the input signal is the periodic function

$$x(t) = A_0 + A_1 \cos(\omega_0 t + \phi_1) + A_2 \cos(2\omega_0 t + \phi_2)$$

Determine expressions for the Fourier transforms of x(t) and v(t). Plot the Fourier transform $V(j\omega)$ on the same axes as your plot of $H(j\omega)$.

- (c) Determine the output y(t) for the input x(t) in part (b).
- (d) Describe how you could use a system of this type to determine A_0 , A_1 , A_2 , ϕ_1 , and ϕ_2 for the given input signal.